Analysis of differentially expressed genes in soybean leaf tissue of tolerant and susceptible cultivars under flooding stress revealed by RNA sequencing

2020 
Flooding stress causes severe yield reduction in soybean worldwide. The development of stress-tolerant cultivars could be an effective measure to reduce the negative effects of flooding stress. Molecular information on the gene expression pattern of tolerant and susceptible genotypes under flooding stress could be valuable to improve the flooding tolerance in soybean. The objective of this study was to analyze the differentially expressed genes (DEGs) revealed by RNA sequencing in the soybean leaf tissues of tolerant (‘Paldalkong’ and ‘Danbaekkong’) and susceptible (‘NTS1116’) cultivars under flooding stress. Seedlings were grown in a well-watered condition up to the V1–V2 stage and flood-stressed by inundating ~ 10-cm water for 14 days. A total of 22,468 genes were differentially expressed in flood-stressed condition compared to the well-watered control condition, out of which 13,729, 13,405, and 13,160 were differentially expressed in ‘Paldalkong’, ‘Danbaekkong’, and ‘NTS1116’, respectively. A higher number of some of the flooding tolerance-related genes such as lipoxygenase, expansin, glutathione S-transferase, and sugar efflux transporter were up-regulated in the tolerant cultivars than in the susceptible cultivar. The number of some abscisic acid-related transcription factors of basic leucine zipper domain and myeloblastosis families was also higher in the tolerant cultivars than in the susceptible cultivar. The molecular information about the DEGs of tolerant and susceptible cultivars obtained in the present study could be valuable to improve the flooding tolerance in soybeans.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    2
    Citations
    NaN
    KQI
    []