One-week escitalopram intake shifts excitation-inhibition balance in the healthy female brain

2021 
Background: Neural health relies on cortical excitation-inhibition balance (EIB), with disrupted EIB underlying circuit dysfunction in several neuropsychiatric disorders. Previous research suggests links between increased cortical excitation and neuroplasticity induced by selective serotonin reuptake inhibitors (SSRIs). Whether there are modulations of EIB following SSRI-administration in the healthy human brain, however, remains unclear. To this end, we assessed changes in EIB following longitudinal escitalopram-intake. Methods: In a randomized, double-blind study protocol, a sample of 59 healthy female individuals on oral contraceptives underwent three resting-state electroencephalography recordings after daily administration of 20 mg escitalopram (n = 28) or placebo (n = 31) at baseline, after single dose, and after 1 week (steady state).We assessed 1/f slope of the power spectrum, a marker of EIB, compared individual trajectories of 1/f slope changes contrasting single dose and 1-week drug intake, and tested the relationship of escitalopram plasma levels and cortical excitatory and inhibitory balance shifts. Results: Escitalopram-intake associated with decreased 1/f slope, indicating an EIB shift in favor of excitation. Furthermore, 1/f slope at baseline and after single dose of escitalopram predicted 1/f slope at steady state. Higher plasma escitalopram levels at single dose associated with better maintenance of these EIB changes throughout the drug administration week. Conclusions: Characterizing changes in 1/f slope during longitudinal SSRI-intake in healthy female individuals, we show that escitalopram shifted EIB in favor of excitation. These findings demonstrate the potential for 1/f slope to predict individual cortical responsivity to SSRIs and widen the neuroimaging lens by testing an interventional psychopharmacological design in a clearly-defined endocrinological state.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    115
    References
    0
    Citations
    NaN
    KQI
    []