Assessment of spray deposition, drift and mass balance from unmanned aerial vehicle sprayer using an artificial vineyard.

2021 
Abstract Under the rapid development of unmanned aerial vehicle (UAV) plant protection products (PPP) application in Asian countries, the drift risk of UAV sprayer operation in orchard or vineyard is fairly high because of the much finer droplets generated and the higher height than ground sprayers, increasing threats to non-targeted crop, human and environment. However, there is few of comprehensive experimental study on the effects of UAV type and nozzle type on spray deposition and drift from UAV sprayer. The objectives of this study were to compare the spray performance of three different typical commercial UAV types (helicopter, 6-rotor and 8-rotor) with two nozzles types (hollow cone nozzle, HCN and air-injector flat fan nozzle, AIN) in vineyard. An artificial vineyard and three vertical collection frames, designed and built by ourselves, were applied for collecting droplets together with PVC collectors, petri dishes and rotary samples. The characteristics of deposition, drift and mass balance of UAV aerial spraying in vineyard were analyzed. As a result, under the crosswind speed of 3.11–3.79 m/s, AIN promoted spray deposition and uniformity and reduced drift significantly compared to HCN for all tested UAVs, improving of the utilization of PPP. The fitted regression functions of the sedimenting and airborne drift were obtained, respectively, and the drift percentage reduction values of AIN compared to HCN determined based on those functions varied from 81% to 95%. With HCN, 49.3%–73.4% of measured droplets drifted into non-targeted area and the highest proportion of drift loss was found for the airborne spray drift. According to the principle of more deposition and less drift, the spray performance of the three UAVs can be ranked in an order of 6-rotor, 8-rotor and helicopter, and two main reasons causing the difference in spray performance were the vortex airflow and the nozzle arrangement.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    1
    Citations
    NaN
    KQI
    []