Fate and toxicity of melamine in activated sludge treatment systems after a long-term sludge adaptation

2013 
Abstract Melamine is a nitrogen-rich (67% nitrogen by mass) heterocyclic aromatic compound that could significantly increase effluent total nitrogen concentrations. In this study, we investigated the degradation of melamine and its impact on activated sludge operations by employing two common activated sludge processes, namely the Modified Ludzack-Ettinger (MLE) process and the continuous stirred tank reactor (CSTR) process. Melamine was dosed continuously from day 125 in both activated sludge treatment systems at an influent concentration of 3 mg/L for about 100 days. Even after such a long period of sludge adaptation, melamine appeared not to be easily biodegradable. The average melamine removal efficiencies in the CSTR and MLE systems were 14 ± 10% and 20 ± 15%, respectively. There was no significant difference in melamine removal between the two different activated sludge processes. The long-term input of melamine resulted in a decrease in the nitrifying bacterial activities (by 82 ± 8%) and population in both systems. Short-term microtiter assay results also showed that melamine reduced activated sludge growth by 80% when supplied at a concentration of 75.6 mg/L. These results suggest that sludge adaptation plays a minimal role in melamine degradation, as the enzymes responsible for hydrolytic deamination of melamine in activated sludge are not easily induced. The insignificant biodegradation of melamine is also attributed to bacterial growth inhibition under long-term dosing conditions with melamine, resulting in a significant decrease in effluent water quality.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    26
    Citations
    NaN
    KQI
    []