MALDI-TOF MS analysis of ribosomal proteins coded in S10 and spc operons rapidly classified the Sphingomonadaceae as alkylphenol polyethoxylate-degrading bacteria from the environment

2012 
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) using ribosomal subunit proteins coded in the S10–spc-alpha operon as biomarkers was applied for the classification of the Sphingomonadaceae from the environment. To construct a ribosomal protein database, S10-spc-alpha operon of type strains of the Sphingomonadaceae and their related alkylphenol polyethoxylate (APEOn)-degrading bacteria were sequenced using specific primers designed based on nucleotide sequences of genome-sequenced strains. The observed MALDI mass spectra of intact cells were compared with the theoretical mass of the constructed ribosomal protein database. The nine selected biomarkers coded in the S10-spc-alpha operon, L18, L22, L24, L29, L30, S08, S14, S17, and S19, could successfully distinguish the Sphingopyxis terrae NBRC 15098T and APEOn-degrading bacteria strain BSN20, despite only one base difference in the 16S rRNA gene sequence. This method, named the S10-GERMS (S10-spc-alpha operon gene-encoded ribosomal protein mass spectrum) method, is a significantly useful tool for bacterial discrimination of the Sphingomonadaceae at the strain level and can detect and monitor the main APEOn-degrading bacteria in the environment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    13
    Citations
    NaN
    KQI
    []