Antimicrobial resistance in Campylobacter coli and Campylobacter jejuni from human campylobacteriosis in Taiwan, 2016-2019.

2021 
Campylobacter coli and C. jejuni are highly resistant to most therapeutic antimicrobials in Taiwan, rapid diagnostics of resistance in bacterial isolates is crucial for the treatment of campylobacteriosis. We characterized 219 (40 C. coli and 179 C. jejuni) isolates recovered from humans between 2016 and 2019 using whole-genome sequencing to investigate the genetic diversity among isolates and the genetic resistance determinants associated with antimicrobial resistance. Susceptibility testing with 8 antimicrobials was conducted to assess the concordance between phenotypic resistance and genetic determinants. The conventional and core genome multilocus sequence typing analysis revealed diverse clonality among the isolates. Mutations in gyrA (T86I, D90N), rpsL (K43R, K88R), and 23S rRNA (A2075G) were found in 91.8%, 3.2%, and 6.4% of the isolates, respectively. Horizontally transferable resistance genes ant(6)-I, aad9, aph(3')-IIIa, aph(2"), blaOXA, catA/fexA, cfr(C), erm(B), lnu, sat4, and tet were identified in 24.2%, 21.5%, 33.3%, 11.9%, 96.3%, 10.0%, 0.9%, 6.8%, 3.2%, 13.2%, and 96.3%, respectively. High-level resistance to 8 antimicrobials in isolates was 100% predictable by the known resistance determinants, whereas low-level resistance to azithromycin, clindamycin, nalidixic acid, ciprofloxacin, and florfenicol in isolates was associated with sequence variations in CmeA and CmeB of the CmeABC efflux pump. Resistance-enhancing CmeB variants were identified in 62.1% (136/219) of isolates. In conclusion, an extremely high proportion of C. coli (100%) and C. jejuni (88.3%) were multidrug-resistant and a high proportion (62.5%) of C. coli isolates had been resistant to azithromycin, erythromycin, and clindamycin that would complicate the treatment of invasive campylobacteriosis in this country.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []