Numerical simulation of plane flow field and the force on the inner rod induced by planetary motion of the rod string

2021 
In order to a the flow of the plane flow field induced by the inner rod rotates and revolves in the cylinder, the Fluent software is used to numerically simulate the plane flow field of the eccentric annulus generated by the planetary motion of the rod string and based on the superposition principle. The velocity distribution and secondary flow of the two flow fields, as well as the fluid force on the inner rod are analyzed. The calculation results show that the flow field induced by the eccentric rotation of the inner rod and the self-rotation of the outer cylinder is quite different from the planetary motion of the inner rod. When rotation of the inner rod has the same direction with the revolution direction, the fluid velocity distribution near the wall of the inner rod is that the velocity on the narrow space side of the annulus is large, and on the wide space side is small. There is a critical value of eccentricity for secondary flow appears when the eccentricity is greater than this value. When rotation of the inner rod is contrary to the revolution, the fluid velocity distribution near the wall of the inner rod is that the velocity on the wide space side of the annulus is large, on the narrow space side is small. Different eccentricity has obvious secondary flow phenomenon where appears in a wide gap and close to the inner rod. When the inner rod revolves, there is a critical value of eccentricity, the inner rod is pushed outward by the fluid force when the eccentricity is less than this critical value. On the contrary, the inner rod is pushed inward. When rotation and revolution are reversed, the critical value of eccentricity increases, when the rotation and revolution are in the same direction, the critical value of eccentricity decreases.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    0
    Citations
    NaN
    KQI
    []