Strangelets at finite temperature in an equivparticle model

2021 
The properties of strangelets at finite temperature are studied within the framework of an equivparticle model, where a new quark mass scaling and self-consistent thermodynamic treatment are adopted. The effects of finite volume and Coulomb energy are taken into account. Our results show that the temperature T, baryon number A and perturbation interactions have strong influences on the properties of strangelets. It is found that the energy per baryon M/A and charge-to-mass ratio fz decrease with baryon number A, while the mechanically stable radius R and strangeness per baryon fs are increasing. For a strangelet with a fixed baryon number, we note that as temperature T increases the quantites M/A, R, and fs are increasing while fz is decreasing. The effects of confinement and perturbative interactions are investigated as well by readjusting the corresponding parameters.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []