Modeling and Optimization of Performance and Cost of Serverless Applications

2020 
Function-as-a-Service (FaaS) and serverless applications have proliferated significantly in recent years because of their high scalability, ease of resource management, and pay-as-you-go pricing model. However, cloud users are facing practical problems when they migrate their applications to the serverless pattern, which are the lack of analytical performance and billing model and the trade-off between limited budget and the desired quality of service of serverless applications. In this article, we fill this gap by proposing and answering two research questions regarding the prediction and optimization of performance and cost of serverless applications. We propose a new construct to formally define a serverless application workflow, and then implement analytical models to predict the average end-to-end response time and the cost of the workflow. Consequently, we propose a heuristic algorithm named Probability Refined Critical Path Greedy algorithm (PRCP) with four greedy strategies to answer two fundamental optimization questions regarding the performance and the cost. We extensively evaluate the proposed models by conducting experimentation on AWS Lambda and Step Functions. Our analytical models can predict the performance and cost of serverless applications with more than 98 percent accuracy. The PRCP algorithms can achieve the optimal configurations of serverless applications with 97 percent accuracy on average.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    10
    Citations
    NaN
    KQI
    []