The Fixed-b Limiting Distribution and the ERP of HAR Tests Under Nonstationarity
2021
We show that the nonstandard limiting distribution of HAR test statistics under fixed-b asymptotics is not pivotal (even after studentization) when the data are nonstationarity. It takes the form of a complicated function of Gaussian processes and depends on the integrated local long-run variance and on on the second moments of the relevant series (e.g., of the regressors and errors for the case of the linear regression model). Hence, existing fixed-b inference methods based on stationarity are not theoretically valid in general. The nuisance parameters entering the fixed-b limiting distribution can be consistently estimated under small-b asymptotics but only with nonparametric rate of convergence. Hence, We show that the error in rejection probability (ERP) is an order of magnitude larger than that under stationarity and is also larger than that of HAR tests based on HAC estimators under conventional asymptotics. These theoretical results reconcile with recent finite-sample evidence in Casini (2021) and Casini, Deng and Perron (2021) who showing that fixed-b HAR tests can perform poorly when the data are nonstationary. They can be conservative under the null hypothesis and have non-monotonic power under the alternative hypothesis irrespective of how large the sample size is.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
2
References
0
Citations
NaN
KQI