The Degree of Helicobacter pylori Infection Affects the State of Macrophage Polarization through Crosstalk between ROS and HIF-1α

2020 
Background and Objective. Helicobacter pylori (H. pylori) is involved in macrophage polarization, but the specific mechanism is not well understood. Therefore, this study is aimed at investigating the effects of the degree of H. pylori infection on the macrophage polarization state and the crosstalk between reactive oxygen species (ROS) and hypoxia-inducible factor 1 α (HIF-1α) in this process. Methods. The expression of CD86, CD206, and HIF-1α in the gastric mucosa was evaluated through immunohistochemistry. RAW 264.7 cells were cocultured with H. pylori at various multiplicities of infection (MOIs), and iNOS, CD86, Arg-1, CD206, and HIF-1α expression was detected by Western blot, PCR, and ELISA analyses. ROS expression was detected with the fluorescent probe DCFH-DA. Macrophages were also treated with the ROS inhibitor NAC or HIF-1α inhibitor YC-1. Results. Immunohistochemical staining revealed that the macrophage polarization state was associated with the progression of gastric lesions and state of H. pylori infection. The MOI of H. pylori affected macrophage polarization, and H. pylori enhanced the expression of ROS and HIF-1α in macrophages. A low MOI of H. pylori promoted both the M1 and M2 phenotypes, while a high MOI suppressed the M2 phenotype. Furthermore, ROS inhibition attenuated HIF-1α expression and switched macrophage polarization from M1 to M2. However, HIF-1α inhibition suppressed ROS expression and inhibited both the M1 phenotype and the M2 phenotype. Inhibition of ROS or HIF-1α also suppressed the activation of the Akt/mTOR pathway, which was implicated in H. pylori-induced macrophage polarization. Conclusions. Macrophage polarization is associated with the progression of gastric lesions and state of H. pylori infection. The MOI of H. pylori influences the macrophage polarization state. Crosstalk between ROS and HIF-1α regulates H. pylori-induced macrophage polarization via the Akt/mTOR pathway.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    0
    Citations
    NaN
    KQI
    []