Rapid extraction of short-lived isotopes from a buffer gas cell for use in gas-phase chemistry experiments, Part II: On-line studies with short-lived accelerator-produced radionuclides

2021 
Abstract A novel combination of advanced gas-chromatography and detection systems coupled to a buffer-gas cell was characterized on-line to allow gas-phase chemical studies of accelerator-produced short-lived α -decaying mercury, francium, and astatine isotopes. These were produced in 40Ar- and 48Ca-induced nuclear fusion–evaporation reactions, subsequently isolated in the recoil separators MARS at Texas A&M University, USA, and TASCA at GSI Darmstadt, Germany, before being thermalized in a buffer-gas-stopping cell. From the latter, the nuclear reaction products were extracted into gas-phase chromatographic systems, suitable for registering α -decaying short-lived radionuclides, such as isotopes of superheavy elements. Efficiencies of 21(3)% for 204-209Fr were reached for the extraction into the optimized miniCOMPACT gas-chromatography setup, indicating that this technique enables the identification of isotopes of volatile as well as non-volatile elements. These studies guide the path towards chemical investigations of superheavy elements beyond flerovium, which are out of reach with currently used setups.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    1
    Citations
    NaN
    KQI
    []