Online Mapping with the Deep Brain Stimulation Lead: A Novel Targeting Tool in Parkinson's Disease.
2020
BACKGROUND: Beta-frequency oscillations (13-30 Hz) are a subthalamic hallmark in patients with Parkinson's disease, and there is increased interest in their utility as an intraoperative marker. OBJECTIVES: The objectives of this study were to assess whether beta activity measured directly from macrocontacts of deep brain stimulation leads could be used (a) as an intraoperative electrophysiological approach for guiding lead placements and (b) for physiologically informed stimulation delivery. METHODS: Every millimeter along the surgical trajectory, local field-potential data were collected from each macrocontact, and power spectral densities were calculated and visualized (n = 39 patients). This was done for online intraoperative functional mapping and post hoc statistical analyses using 2 methods: generating distributions of spectral activity along surgical trajectories and direct delineation (presence versus lack) of beta peaks. In a subset of patients, this approach was corroborated by microelectrode recordings. Furthermore, the match rate between beta peaks at the final target position and the clinically determined best stimulation site were assessed. RESULTS: Subthalamic recording sites were delineated by both methods of reconstructing functional topographies of spectral activity along surgical trajectories at the group level (P < 0.0001). Beta peaks were detected when any portion of the 1.5 mm macrocontact was within the microelectrode-defined subthalamic border. The highest beta peak at the final implantation site corresponded to the site of active stimulation in 73.3% of hemispheres (P < 0.0001). In 93.3% of hemispheres, active stimulation corresponded to the first-highest or second-highest beta peak. CONCLUSIONS: Online measures of beta activity with the deep brain stimulation macroelectrode can be used to inform surgical lead placement and contribute to optimization of stimulation programming procedures. © 2020 International Parkinson and Movement Disorder Society.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
61
References
2
Citations
NaN
KQI