Structural Characterization of the Unligated and Choline-bound Forms of the Major Pneumococcal Autolysin LytA Amidase CONFORMATIONAL TRANSITIONS INDUCED BY TEMPERATURE

1996 
Abstract The secondary and tertiary structures of the choline-dependent major pneumococcal autolysin LytA amidase and of its COOH-terminal domain, C-LytA, have been investigated by circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopy. Deconvolution analysis shows that the far-UV CD spectrum of both proteins is governed by chiral contributions, ascribed to aromatic residue clusters contained in the COOH-terminal module. The secondary structure of LytA, determined from the FTIR spectral features of the amide Iband, results in 19% of α-helix and tight loops, 47% of β-sheets, 23% of turns, and 11% of irregular structures. Similar values are obtained for C-LytA. The addition of choline significantly modifies the far- and near-UV CD spectra of LytA and C-LytA. These changes are attributed to alterations in the environment of their aromatic clusters, since the FTIR spectra indicate that the secondary structure is essentially unaffected. CD choline titration curves at different wavelengths show the existence of two types of binding sites/subunit. Data analysis assuming protein dimerization upon saturation of the high affinity sites reveals positive cooperativity between the low affinity sites. Thermal denaturation of both proteins occurs with the formation of unfolding intermediates and the presence of residual secondary structure in the final denatured state. The irreversibility of the thermal denaturation of LytA and C-LytA results from the collapse of the polypeptide chain into intermolecular extended structures. At saturating concentrations, choline prevents the formation of these structures in the isolated COOH-terminal module.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    34
    Citations
    NaN
    KQI
    []