A high-precision miniaturized rotating coil transducer for magnetic measurements

2018 
Abstract A miniaturized Printed Circuit Board (PCB) sensing coil, jointly developed by CERN and Fermilab for measuring the field of small-gap (less than 10 mm) accelerator magnets, is illustrated. A sensing coil array, with a scheme for compensating the main field when measuring the harmonic error components, hosted on a synthetic sapphire-based transducer, is presented. Key innovating features are (i) very-small size, both for the sensing coil array (thickness of 1.380 mm) and for the transducer (overall diameter of 7.350 mm), (ii) metrological performance, namely accuracy (more than five times better than state of the art), and 1-sigma repeatability (ten times better on harmonics with amplitude less than 100 ppm), and (iii) manufacturing technology of both the coil array (13 double layers aligned within 10 μm), and the sapphire support (concentricity, the most important uncertainty source for rotating coils, 3 μm of uncertainty, namely one order of magnitude better than fiberglass support). After stating the measurement problem, the design of the transducer and a case study of a two-layer PCB sensor array are illustrated. Then, the prototyping and quality control of both the sensor and the transducer are discussed. Furthermore, the calibration and the results obtained with a prototype setup at Fermilab are presented. Finally, in the appendix, the theory of the rotating coil, the sensor geometry, and the harmonic compensation are briefly reviewed for the reader easiness.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    1
    Citations
    NaN
    KQI
    []