Experimental evidence for the influence of structure and meaning on linear order in the noun phrase

2020 
Recent work has used artificial language experiments to argue that hierarchical representations drive learners’ expectations about word order in complex noun phrases like these two green cars (Culbertson & Adger 2014; Martin, Ratitamkul, et al. 2019). When trained on a novel language in which individual modifiers come after the Noun, English speakers overwhelmingly assume that multiple nominal modifiers should be ordered such that Adjectives come closest to the Noun, then Numerals, then Demonstratives (i.e., N-Adj-Num-Dem or some subset thereof). This order transparently reflects a constituent structure in which Adjectives combine with Nouns to the exclusion of Numerals and Demonstratives, and Numerals combine with Noun+Adjective units to the exclusion of Demonstratives. This structure has also been claimed to derive frequency asymmetries in complex noun phrase order across languages (e.g., Cinque 2005). However, we show that features of the methodology used in these experiments potentially encourage participants to use a particular metalinguistic strategy that could yield this outcome without implicating constituency structure. Here, we use a more naturalistic artificial language learning task to investigate whether the preference for hierarchy-respecting orders is still found when participants do not use this strategy. We find that the preference still holds, and, moreover, as Culbertson & Adger (2014) speculate, that its strength reflects structural distance between modifiers. It is strongest when ordering Adjectives relative to Demonstratives, and weaker when ordering Numerals relative to Adjectives or Demonstratives relative to Numerals. Our results provide the strongest evidence yet for the psychological influence of hierarchical structure on word order preferences during learning.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    3
    Citations
    NaN
    KQI
    []