language-icon Old Web
English
Sign In

Oxygen sensor

An oxygen sensor (or lambda sensor, where lambda refers to air–fuel equivalence ratio, usually denoted by λ) is an electronic device that measures the proportion of oxygen (O2) in the gas or liquid being analysed. An oxygen sensor (or lambda sensor, where lambda refers to air–fuel equivalence ratio, usually denoted by λ) is an electronic device that measures the proportion of oxygen (O2) in the gas or liquid being analysed. It was developed by Robert Bosch GmbH during the late 1960s under the supervision of Dr. Günter Bauman. The original sensing element is made with a thimble-shaped zirconia ceramic coated on both the exhaust and reference sides with a thin layer of platinum and comes in both heated and unheated forms. The planar-style sensor entered the market in 1990 and significantly reduced the mass of the ceramic sensing element, as well as incorporating the heater within the ceramic structure. This resulted in a sensor that started sooner and responded faster. The most common application is to measure the exhaust-gas concentration of oxygen for internal combustion engines in automobiles and other vehicles in order to calculate and, if required, dynamically adjust the air-fuel ratio so that catalytic converters can work optimally, and also determine whether the converter is performing properly or not. Divers also use a similar device to measure the partial pressure of oxygen in their breathing gas. Scientists use oxygen sensors to measure respiration or production of oxygen and use a different approach. Oxygen sensors are used in oxygen analyzers, which find extensive use in medical applications such as anesthesia monitors, respirators and oxygen concentrator so. Oxygen sensors are also used in hypoxic air fire prevention systems to continuously monitor the oxygen concentration inside the protected volumes. There are many different ways of measuring oxygen. These include technologies such as zirconia, electrochemical (also known as galvanic), infrared, ultrasonic, paramagnetic, and very recently, laser methods. Automotive oxygen sensors, colloquially known as O2 ('ō two') sensors, make modern electronic fuel injection and emission control possible. They help determine, in real time, whether the air–fuel ratio of a combustion engine is rich or lean. Since oxygen sensors are located in the exhaust stream, they do not directly measure the air or the fuel entering the engine, but when information from oxygen sensors is coupled with information from other sources, it can be used to indirectly determine the air–fuel ratio. Closed-loop feedback-controlled fuel injection varies the fuel injector output according to real-time sensor data rather than operating with a predetermined (open-loop) fuel map. In addition to enabling electronic fuel injection to work efficiently, this emissions control technique can reduce the amounts of both unburnt fuel and oxides of nitrogen entering the atmosphere. Unburnt fuel is pollution in the form of air-borne hydrocarbons, while oxides of nitrogen (NOx gases) are a result of combustion chamber temperatures exceeding 1300 kelvins, due to excess air in the fuel mixture therefore contribute to smog and acid rain. Volvo was the first automobile manufacturer to employ this technology in the late 1970s, along with the three-way catalyst used in the catalytic converter.

[ "Oxygen", "AFR sensor", "Oxygen meters" ]
Parent Topic
Child Topic
    No Parent Topic