Melanin (/ˈmɛlənɪn/ (listen); from Greek: μέλας melas, 'black, dark') is a broad term for a group of natural pigments found in most organisms. Melanin is produced through a multistage chemical process known as melanogenesis, where the oxidation of the amino acid tyrosine is followed by polymerization. The melanin pigments are produced in a specialized group of cells known as melanocytes.(See Template:Leucine metabolism in humans – this diagram does not include the pathway for β-leucine synthesis via leucine 2,3-aminomutase) Melanin (/ˈmɛlənɪn/ (listen); from Greek: μέλας melas, 'black, dark') is a broad term for a group of natural pigments found in most organisms. Melanin is produced through a multistage chemical process known as melanogenesis, where the oxidation of the amino acid tyrosine is followed by polymerization. The melanin pigments are produced in a specialized group of cells known as melanocytes. There are three basic types of melanin: eumelanin, pheomelanin, and neuromelanin. The most common type is eumelanin, of which there are two types—brown eumelanin and dark brown eumelanin. Pheomelanin is a cysteine-derivative that contains polybenzothiazine portions that are largely responsible for the color of red hair, among other pigmentation. Neuromelanin is found in the brain. Research has been undertaken to investigate its efficacy in treating neurodegenerative disorders such as Parkinson's. In the human skin, melanogenesis is initiated by exposure to UV radiation, causing the skin to darken. Melanin is an effective absorbent of light; the pigment is able to dissipate over 99.9% of absorbed UV radiation. Because of this property, melanin is thought to protect skin cells from UVB radiation damage, reducing the risk of folate depletion and dermal degradation, and it is considered that exposure to UV radiation is associated with increased risk of malignant melanoma, a cancer of melanocytes (melanin cells). Studies have shown a lower incidence for skin cancer in individuals with more concentrated melanin, i.e. darker skin tone. However, the relationship between skin pigmentation and photoprotection is still uncertain. In humans, melanin is the primary determinant of skin color. It is also found in hair, the pigmented tissue underlying the iris of the eye, and the stria vascularis of the inner ear. In the brain, tissues with melanin include the medulla and pigment-bearing neurons within areas of the brainstem, such as the locus coeruleus and the substantia nigra. It also occurs in the zona reticularis of the adrenal gland. The melanin in the skin is produced by melanocytes, which are found in the basal layer of the epidermis. Although, in general, human beings possess a similar concentration of melanocytes in their skin, the melanocytes in some individuals and ethnic groups produce variable amounts of melanin. Some humans have very little or no melanin synthesis in their bodies, a condition known as albinism. Because melanin is an aggregate of smaller component molecules, there are many different types of melanin with different proportions and bonding patterns of these component molecules. Both pheomelanin and eumelanin are found in human skin and hair, but eumelanin is the most abundant melanin in humans, as well as the form most likely to be deficient in albinism. Eumelanin polymers have long been thought to comprise numerous cross-linked 5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid (DHICA) polymers. There are two types of eumelanin, which are brown eumelanin and black eumelanin. Those two types of eumelanin chemically differ from each other in their pattern of polymeric bonds. A small amount of black eumelanin in the absence of other pigments causes grey hair. A small amount of brown eumelanin in the absence of other pigments causes yellow (blond) hair. As the body ages, it continues to produce black eumelanin but stops producing brown eumelanin, resulting in the grey hair that is common in elderly people. Pheomelanins (or phaeomelanins) impart a pink to red hue, depending upon the concentration. Pheomelanins are particularly concentrated in the lips, nipples, glans of the penis, and vagina. When a small amount of brown eumelanin in hair, which would otherwise cause blond hair, is mixed with red pheomelanin, the result is orange hair, which is typically called 'red hair'. Pheomelanin is also present in the skin, and redheads consequently often have a more pinkish hue to their skin as well.