language-icon Old Web
English
Sign In

Cat's-whisker detector

A crystal detector is an obsolete electronic component in some early 20th century radio receivers that used a piece of crystalline mineral as a detector (demodulator) to rectify the alternating current radio signal to extract the audio modulation which produced the sound in the earphones. It was the first type of semiconductor diode, and one of the first semiconductor electronic devices. The most common type was the so-called cat whisker detector, which consisted of a piece of crystalline mineral, usually galena (lead sulfide), with a fine wire touching its surface. The 'asymmetric conduction' of electric current across electrical contacts between a crystal and a metal was discovered in 1874 by Karl Ferdinand Braun. Crystals were first used as radio wave detectors in 1894 by Jagadish Chandra Bose in his microwave experiments. who first patented a crystal detector in 1901. The crystal detector was developed into a practical radio component mainly by G. W. Pickard, who began research on detector materials in 1902 and found hundreds of substances that could be used in forming rectifying junctions. The physical principles by which they worked were not understood at the time they were used, but subsequent research into these primitive point contact semiconductor junctions in the 1930s and 1940s led to the development of modern semiconductor electronics.The frying ceased, and the signals, though much weakened, became materially clearer through being freed of their background of microphonic noise. Glancing over at my circuit, I discovered to my great surprise that instead of cutting out two of the cells I had cut out all three; so, therefore, the telephone diaphragm was being operated solely by the energy of the receiver signals. A contact detector operating without local battery seemed so contrary to all my previous experience that ... I resolved at once to thoroughly investigate the phenomenon.Such variability, bordering on what seemed the mystical, plagued the early history of crystal detectors and caused many of the vacuum tube experts of a later generation to regard the art of crystal rectification as being close to disreputable.At that time you could get a chunk of silicon... put a cat whisker down on one spot, and it would be very active and rectify very well in one direction. You moved it around a little bit-maybe a fraction, a thousandth of an inch-and you might find another active spot, but here it would rectify in the other direction. A crystal detector is an obsolete electronic component in some early 20th century radio receivers that used a piece of crystalline mineral as a detector (demodulator) to rectify the alternating current radio signal to extract the audio modulation which produced the sound in the earphones. It was the first type of semiconductor diode, and one of the first semiconductor electronic devices. The most common type was the so-called cat whisker detector, which consisted of a piece of crystalline mineral, usually galena (lead sulfide), with a fine wire touching its surface. The 'asymmetric conduction' of electric current across electrical contacts between a crystal and a metal was discovered in 1874 by Karl Ferdinand Braun. Crystals were first used as radio wave detectors in 1894 by Jagadish Chandra Bose in his microwave experiments. who first patented a crystal detector in 1901. The crystal detector was developed into a practical radio component mainly by G. W. Pickard, who began research on detector materials in 1902 and found hundreds of substances that could be used in forming rectifying junctions. The physical principles by which they worked were not understood at the time they were used, but subsequent research into these primitive point contact semiconductor junctions in the 1930s and 1940s led to the development of modern semiconductor electronics. The unamplified radio receivers that used crystal detectors were called crystal radios. The crystal radio was the first type of radio receiver that was used by the general public, and became the most widely used type of radio until the 1920s. It became obsolete with the development of vacuum tube receivers around 1920, but continued to be used until World War 2. The contact between two dissimilar materials at the surface of the detector's semiconducting crystal forms a crude semiconductor diode, which acts as a rectifier, conducting electric current in only one direction and resisting current flowing in the other direction. In a crystal radio, it was connected between the tuned circuit, which passed on the oscillating current induced in the antenna from the desired radio station, and the earphone. Its function was to act as a demodulator, rectifying the radio signal, converting it from alternating current to a pulsing direct current, to extract the audio signal (modulation) from the radio frequency carrier wave. The audio frequency current produced by the detector passed through the earphone causing the earphone's diaphragm to vibrate, pushing on the air to create sound waves. This diagram shows a simplified explanation of how it works: Crystal radios had no amplifying components to increase the loudness of the radio signal; the sound power produced by the earphone came solely from the radio waves of the radio station being received, intercepted by the antenna. Therefore, the sensitivity of the detector was a major factor determining the sensitivity and reception range of the receiver, motivating much research into finding sensitive detectors. In addition to its main use in crystal radios, crystal detectors were also used as radio wave detectors in scientific experiments, in which the DC output current of the detector was registered by a sensitive galvanometer, and in test instruments such as wavemeters used to calibrate the frequency of radio transmitters. The crystal detector consisted of an electrical contact between the surface of a semiconducting crystalline mineral and either a metal or another crystal. Since at the time they were used no one knew how they worked, crystal detectors evolved by trial and error. The construction of the detector depended on the type of crystal used, as it was found different minerals varied in how much contact area and pressure on the crystal surface was needed to make a sensitive rectifying contact. Crystals that required a light pressure like galena were used with the wire cat whisker contact; silicon was used with a heavier point contact, while silicon carbide (carborundum) could tolerate the heaviest pressure. Another type used two crystals of different minerals with their surfaces touching, the most common being the 'Perikon' detector. Since the detector would only function when the contact was made at certain spots on the crystal surface, the contact point was almost always made adjustable. Below are the major categories of crystal detectors used during the early 20th century: Patented by Braun and Pickard in 1906, this was the most common type of crystal detector, mainly used with galena but also other crystals. It consisted of a pea-size piece of crystalline mineral in a metal holder, with its surface touched by a fine metal wire or needle (the 'cat whisker'). The contact between the tip of the wire and the surface of the crystal formed a crude unstable point-contact metal–semiconductor junction, forming a Schottky barrier diode. The wire whisker is the anode, and the crystal is the cathode; current can flow from the wire into the crystal but not in the other direction. Only certain sites on the crystal surface functioned as rectifying junctions. The device was very sensitive to the exact geometry and pressure of contact between wire and crystal, and the contact could be disrupted by the slightest vibration. Therefore, a usable point of contact had to be found by trial and error before each use. The wire was suspended from a moveable arm and was dragged across the crystal face by the user until the device began functioning. In a crystal radio, the user would tune the radio to a strong local station if possible and then adjust the cat whisker until the station or radio noise (a static hissing noise) was heard in the radio's earphones. This required some skill and a lot of patience. An alternative method of adjustment was to use a battery-operated buzzer connected to the radio's ground wire or inductively coupled to the tuning coil, to generate a test signal. The spark produced by the buzzer's contacts functioned as a weak radio transmitter whose radio waves could be received by the detector, so when a rectifying spot had been found on the crystal the buzz could be heard in the earphones, at which time the buzzer was turned off.

[ "Detector", "Crystal" ]
Parent Topic
Child Topic
    No Parent Topic