language-icon Old Web
English
Sign In

Cryogenic Dark Matter Search

The Cryogenic Dark Matter Search (CDMS) is a series of experiments designed to directly detect particle dark matter in the form of WIMPs. Using an array of semiconductor detectors at millikelvin temperatures, CDMS has at times set the most sensitive limits on the interactions of WIMP dark matter with terrestrial materials (as of 2018, CDMS limits are not the most sensitive). The first experiment, CDMS I, was run in a tunnel under the Stanford University campus. It was followed by CDMS II experiment in the Soudan Mine. The most recent experiment, SuperCDMS (or SuperCDMS Soudan), was located deep underground in the Soudan Mine in northern Minnesota and took data 2011-2015. The series of experiments continues with SuperCDMS SNOLAB, an experiment located at the SNOLAB facility in Canada that started construction in 2018 and is expected to start data taking in early 2020s. The Cryogenic Dark Matter Search (CDMS) is a series of experiments designed to directly detect particle dark matter in the form of WIMPs. Using an array of semiconductor detectors at millikelvin temperatures, CDMS has at times set the most sensitive limits on the interactions of WIMP dark matter with terrestrial materials (as of 2018, CDMS limits are not the most sensitive). The first experiment, CDMS I, was run in a tunnel under the Stanford University campus. It was followed by CDMS II experiment in the Soudan Mine. The most recent experiment, SuperCDMS (or SuperCDMS Soudan), was located deep underground in the Soudan Mine in northern Minnesota and took data 2011-2015. The series of experiments continues with SuperCDMS SNOLAB, an experiment located at the SNOLAB facility in Canada that started construction in 2018 and is expected to start data taking in early 2020s. Observations of the large-scale structure of the universe show that matter is aggregated into very large structures that have not had time to form under the force of their own self-gravitation. It is generally believed that some form of missing mass is responsible for increasing the gravitational force at these scales, although this mass has not been directly observed. This is a problem; normal matter in space will heat up until it gives off light, so if this missing mass exists, it is generally assumed to be in a form that is not commonly observed on earth. A number of proposed candidates for the missing mass have been put forward over time. Early candidates included heavy baryons that would have had to be created in the Big Bang, but more recent work on nucleosynthesis seems to have ruled most of these out. Another candidate are new types of particles known as weakly interacting massive particles, or 'WIMP's. As the name implies, WIMPs interact weakly with normal matter, which explains why they are not easily visible.

[ "Scalar field dark matter" ]
Parent Topic
Child Topic
    No Parent Topic