language-icon Old Web
English
Sign In

Promethium

Promethium is a chemical element with the symbol Pm and atomic number 61. All of its isotopes are radioactive; it is extremely rare, with only about 500–600 grams naturally occurring in Earth's crust at any given time. Promethium is one of only two radioactive elements that are followed in the periodic table by elements with stable forms, the other being technetium. Chemically, promethium is a lanthanide. Promethium shows only one stable oxidation state of +3.Jacob A. MarinskyLawrence E. GlendeninCharles D. Coryell Promethium is a chemical element with the symbol Pm and atomic number 61. All of its isotopes are radioactive; it is extremely rare, with only about 500–600 grams naturally occurring in Earth's crust at any given time. Promethium is one of only two radioactive elements that are followed in the periodic table by elements with stable forms, the other being technetium. Chemically, promethium is a lanthanide. Promethium shows only one stable oxidation state of +3. In 1902 Bohuslav Brauner suggested that there was a then-unknown element with properties intermediate between those of the known elements neodymium (60) and samarium (62); this was confirmed in 1914 by Henry Moseley, who, having measured the atomic numbers of all the elements then known, found that atomic number 61 was missing. In 1926, two groups (one Italian and one American) claimed to have isolated a sample of element 61; both 'discoveries' were soon proven to be false. In 1938, during a nuclear experiment conducted at Ohio State University, a few radioactive nuclides were produced that certainly were not radioisotopes of neodymium or samarium, but there was a lack of chemical proof that element 61 was produced, and the discovery was not generally recognized. Promethium was first produced and characterized at Oak Ridge National Laboratory in 1945 by the separation and analysis of the fission products of uranium fuel irradiated in a graphite reactor. The discoverers proposed the name 'prometheum' (the spelling was subsequently changed), derived from Prometheus, the Titan in Greek mythology who stole fire from Mount Olympus and brought it down to humans, to symbolize 'both the daring and the possible misuse of mankind's intellect'. However, a sample of the metal was made only in 1963. There are two possible sources for natural promethium: rare decays of natural europium-151 (producing promethium-147) and uranium (various isotopes). Practical applications exist only for chemical compounds of promethium-147, which are used in luminous paint, atomic batteries and thickness-measurement devices, even though promethium-145 is the most stable promethium isotope. Because natural promethium is exceedingly scarce, it is typically synthesized by bombarding uranium-235 (enriched uranium) with thermal neutrons to produce promethium-147 as a fission product. A promethium atom has 61 electrons, arranged in the configuration 4f56s2. In forming compounds, the atom loses its two outermost electrons and one of the 4f-electrons, which belongs to an open subshell. The element's atomic radius is the second largest among all the lanthanides but is only slightly greater than those of the neighboring elements. It is the most notable exception to the general trend of the contraction of lanthanide atoms with the increase of their atomic numbers (see lanthanide contraction). Many properties of promethium rely on its position among lanthanides and are intermediate between those of neodymium and samarium. For example, the melting point, the first three ionization energies, and the hydration energy are greater than those of neodymium and lower than those of samarium; similarly, the estimate for the boiling point, ionic (Pm3+) radius, and standard heat of formation of monatomic gas are greater than those of samarium and less than those of neodymium. Promethium has a double hexagonal close packed (dhcp) structure and a hardness of 63 kg/mm2. This low-temperature alpha form converts into a beta, body-centered cubic (bcc) phase upon heating to 890 °C. Promethium belongs to the cerium group of lanthanides and is chemically very similar to the neighboring elements. Because of its instability, chemical studies of promethium are incomplete. Even though a few compounds have been synthesized, they are not fully studied; in general, they tend to be pink or red in color. Treatment of acidic solutions containing Pm3+ ions with ammonia results in a gelatinous light-brown sediment of hydroxide, Pm(OH)3, which is insoluble in water. When dissolved in hydrochloric acid, a water-soluble yellow salt, PmCl3, is produced; similarly, when dissolved in nitric acid, a nitrate results, Pm(NO3)3. The latter is also well-soluble; when dried, it forms pink crystals, similar to Nd(NO3)3. The electron configuration for Pm3+ is 4f4, and the color of the ion is pink. The ground state term symbol is 5I4. The sulfate is slightly soluble, like the other cerium group sulfates. Cell parameters have been calculated for its octahydrate; they lead to conclusion that the density of Pm2(SO4)3·8 H2O is 2.86 g/cm3. The oxalate, Pm2(C2O4)3·10 H2O, has the lowest solubility of all lanthanide oxalates. Unlike the nitrate, the oxide is similar to the corresponding samarium salt and not the neodymium salt. As-synthesized, e.g. by heating the oxalate, it is a white or lavender-colored powder with disordered structure. This powder crystallizes in a cubic lattice upon heating to 600 °C. Further annealing at 800 °C and then at 1750 °C irreversibly transforms it to a monoclinic and hexagonal phases, respectively, and the last two phases can be interconverted by adjusting the annealing time and temperature. Promethium forms only one stable oxidation state, +3, in the form of ions; this is in line with other lanthanides. According to its position in the periodic table, the element cannot be expected to form stable +4 or +2 oxidation states; treating chemical compounds containing Pm3+ ions with strong oxidizing or reducing agents showed that the ion is not easily oxidized or reduced. Promethium is the only lanthanide and one of only two elements among the first 83 that has no stable or long-lived (primordial) isotopes. This is a result of a rarely occurring effect of the liquid drop model and stabilities of neighbor element isotopes; it is also the least stable element of the first 84. The primary decay products are neodymium and samarium isotopes (promethium-146 decays to both, the lighter isotopes generally to neodymium via positron decay and electron capture, and the heavier isotopes to samarium via beta decay). Promethium nuclear isomers may decay to other promethium isotopes and one isotope (145Pm) has a very rare alpha decay mode to stable praseodymium-141.

[ "Europium", "Gadolinium", "Thulium", "Erbium", "Holmium" ]
Parent Topic
Child Topic
    No Parent Topic