language-icon Old Web
English
Sign In

Media access control

In IEEE 802 LAN/MAN standards, the medium access control (MAC) sublayer is the layer that controls the hardware responsible for interaction with the wired, optical or wireless transmission medium. The MAC sublayer and the logical link control (LLC) sublayer together make up the data link layer. Within the data link layer, the LLC provides flow control and multiplexing for the logical link (i.e. EtherType, 802.1Q VLAN tag etc), while the MAC provides flow control and multiplexing for the transmission medium. In IEEE 802 LAN/MAN standards, the medium access control (MAC) sublayer is the layer that controls the hardware responsible for interaction with the wired, optical or wireless transmission medium. The MAC sublayer and the logical link control (LLC) sublayer together make up the data link layer. Within the data link layer, the LLC provides flow control and multiplexing for the logical link (i.e. EtherType, 802.1Q VLAN tag etc), while the MAC provides flow control and multiplexing for the transmission medium. These two sublayers together correspond to layer 2 of the OSI model. For compatibility reasons, LLC is optional for implementations of IEEE 802.3 (the frames are then 'raw'), but compulsory for implementations of other IEEE 802 physical layer standards. Within the hierarchy of the OSI model and IEEE 802 standards, the MAC sublayer provides a control abstraction of the physical layer such that the complexities of physical link control are invisible to the LLC and upper layers of the network stack. Thus any LLC sublayer (and higher layers) may be used with any MAC. In turn, the medium access control block is formally connected to the PHY via a media-independent interface. Although the MAC block is today typically integrated with the PHY within the same device package, historically any MAC could be used with any PHY, independent of the transmission medium. When sending data to another device on the network, the MAC sublayer encapsulates higher-level frames into frames appropriate for the transmission medium (i.e. the MAC adds a syncword preamble and also padding if necessary), adds a frame check sequence to identify transmission errors, and then forwards the data to the physical layer as soon as the appropriate channel access method permits it. For topologies with a collision domain (bus, ring, mesh, point-to-multipoint topologies), controlling when data is sent and when to wait is necessary to avoid collisions. Additionally, the MAC is also responsible for compensating for collisions by initiating retransmission if a jam signal is detected. When receiving data from the physical layer, the MAC block ensures data integrity by verifying the sender's frame check sequences, and strips off the sender's preamble and padding before passing the data up to the higher layers. According to IEEE Std 802-2001 section 6.2.3 'MAC sublayer', the primary functions performed by the MAC layer are: In the case of Ethernet, according to 802.3-2002 section 4.1.4, the functions required of a MAC are: The local network addresses used in IEEE 802 networks and FDDI networks are called media access control addresses; they are based on the addressing scheme that was used in early Ethernet implementations. A MAC address is intended as a unique serial number. MAC addresses are typically assigned to network interface hardware at the time of manufacture. The most significant part of the address identifies the manufacturer, who assigns the remainder of the address, thus provide a potentially unique address. This makes it possible for frames to be delivered on a network link that interconnects hosts by some combination of repeaters, hubs, bridges and switches, but not by network layer routers. Thus, for example, when an IP packet reaches its destination (sub)network, the destination IP address (a layer 3 or network layer concept) is resolved with the Address Resolution Protocol for IPv4, or by Neighbor Discovery Protocol (IPv6) into the MAC address (a layer 2 concept) of the destination host. Examples of physical networks are Ethernet networks and Wi-Fi networks, both of which are IEEE 802 networks and use IEEE 802 48-bit MAC addresses. A MAC layer is not required in full-duplex point-to-point communication, but address fields are included in some point-to-point protocols for compatibility reasons. The channel access control mechanisms provided by the MAC layer are also known as a multiple access protocol. This makes it possible for several stations connected to the same physical medium to share it. Examples of shared physical media are bus networks, ring networks, hub networks, wireless networks and half-duplex point-to-point links. The multiple access protocol may detect or avoid data packet collisions if a packet mode contention based channel access method is used, or reserve resources to establish a logical channel if a circuit-switched or channelization-based channel access method is used. The channel access control mechanism relies on a physical layer multiplex scheme.

[ "Computer hardware", "Computer network", "Telecommunications", "Communication channel", "Wireless", "D-MAC", "MAC filtering", "MAC service data unit", "Virtual Switching Instance" ]
Parent Topic
Child Topic
    No Parent Topic