language-icon Old Web
English
Sign In

Biobattery

A bio-battery is an energy storing device that is powered by organic compounds, usually being glucose, such as the glucose in human blood. When enzymes in human bodies break down glucose, several electrons and protons are released. Therefore, by using enzymes to break down glucose, bio-batteries directly receive energy from glucose. These batteries then store this energy for later use. This concept is almost identical to how both plants and many animals obtain energy. Although the batteries are still being tested before being commercially sold, several research teams and engineers are working to further advance the development of these batteries. A bio-battery is an energy storing device that is powered by organic compounds, usually being glucose, such as the glucose in human blood. When enzymes in human bodies break down glucose, several electrons and protons are released. Therefore, by using enzymes to break down glucose, bio-batteries directly receive energy from glucose. These batteries then store this energy for later use. This concept is almost identical to how both plants and many animals obtain energy. Although the batteries are still being tested before being commercially sold, several research teams and engineers are working to further advance the development of these batteries. Like any battery, bio-batteries consist of an anode, cathode, separator and electrolyte with each component layered on top of another. Anodes and cathodes are the positive and negative areas on a battery that allow electrons to flow in and out. The anode is located at the top of the battery and the cathode is located at the bottom of the battery. Anodes allow current to flow in from outside the battery, whereas cathodes allow current to flow out from the battery. Between the anode and the cathode lies the electrolyte which contains a separator. The main function of the separator is to keep the cathode and anode separated, to avoid electrical short circuits. This system as a whole, allows for a flow of protons ( H + {displaystyle {ce {H+}}} ) and electrons ( e − {displaystyle {ce {e-}}} ) which ultimately generates electricity.

[ "Electrode", "Cathode", "Anode", "Battery (electricity)" ]
Parent Topic
Child Topic
    No Parent Topic