In astrophysics, the Tolman–Oppenheimer–Volkoff (TOV) equation constrains the structure of a spherically symmetric body of isotropic material which is in static gravitational equilibrium, as modelled by general relativity. The equation is In astrophysics, the Tolman–Oppenheimer–Volkoff (TOV) equation constrains the structure of a spherically symmetric body of isotropic material which is in static gravitational equilibrium, as modelled by general relativity. The equation is Here, r is a radial coordinate, and ρ(r0) and P(r0) are the density and pressure, respectively, of the material at r = r0. The quantity m(r0), the total mass within r0, is discussed below. The equation is derived by solving the Einstein equations for a general time-invariant, spherically symmetric metric. For a solution to the Tolman–Oppenheimer–Volkoff equation, this metric will take the form where ν(r) is determined by the constraint When supplemented with an equation of state, F(ρ, P) = 0, which relates density to pressure, the Tolman–Oppenheimer–Volkoff equation completely determines the structure of a spherically symmetric body of isotropic material in equilibrium. If terms of order 1/c2 are neglected, the Tolman–Oppenheimer–Volkoff equation becomes the Newtonian hydrostatic equation, used to find the equilibrium structure of a spherically symmetric body of isotropic material when general-relativistic corrections are not important. If the equation is used to model a bounded sphere of material in a vacuum, the zero-pressure condition P(r) = 0 and the condition eν = 1 − 2Gm/rc2 should be imposed at the boundary. The second boundary condition is imposed so that the metric at the boundary is continuous with the unique static spherically symmetric solution to the vacuum field equations, the Schwarzschild metric: m(r0) is the total mass inside radius r = r0, as measured by the gravitational field felt by a distant observer, it satisfies m(0) = 0. Here, M is the total mass of the object, again, as measured by the gravitational field felt by a distant observer. If the boundary is at r = R, continuity of the metric and the definition of m(r) require that