language-icon Old Web
English
Sign In

Robotic sensing

The visual sensing system can be based on anything from the traditional camera, sonar, and laser to the new technology radio frequency identification (RFID), which transmits radio signals to a tag on an object that emits back an identification code. All four methods aim for three procedures—sensation, estimation, and matching. Image quality is important in applications that require excellent robotic vision. Algorithm based on wavelet transform for fusing images of different spectra and different foci improves image quality. Robots can gather more accurate information from the resulting improved image. Visual sensors help robots to identify the surrounding and take appropriate action. Robots analyze the image of the immediate environment imported from the visual sensor. The result is compared to the ideal intermediate or end image, so that appropriate movement can be determined to reach the intermediate or final goal. Touch sensory signals can be generated by the robot's own movements. It is important to identify only the external tactile signals for accurate operations. Previous solutions employed the Wiener filter, which relies on the prior knowledge of signal statistics that are assumed to be stationary. Recent solution applies an adaptive filter to the robot’s logic. It enables the robot to predict the resulting sensor signals of its internal motions, screening these false signals out. The new method improves contact detection and reduces false interpretation. Touch patterns enable robots to interpret human emotions in interactive applications. Four measurable features—force, contact time, repetition, and contact area change—can effectively categorize touch patterns through the temporal decision tree classifier to account for the time delay and associate them to human emotions with up to 83% accuracy. The Consistency Index is applied at the end to evaluate the level of confidence of the system to prevent inconsistent reactions. Robots use touch signals to map the profile of a surface in hostile environment such as a water pipe. Traditionally, a predetermined path was programmed into the robot. Currently, with the integration of touch sensors, the robots first acquire a random data point; the algorithm of the robot will then determine the ideal position of the next measurement according to a set of predefined geometric primitives. This improves the efficiency by 42%. In recent years, using touch as a stimulus for interaction has been the subject of much study. In 2010, the robot seal PARO was built, which reacts to many stimuli from human interaction, including touch. The therapeutic benefits of such human-robot interaction is still being studied, but has shown very positive results.

[ "Robot control" ]
Parent Topic
Child Topic
    No Parent Topic