language-icon Old Web
English
Sign In

Barbiturate

A barbiturate is a drug that acts as a central nervous system depressant, and can therefore produce a wide range of effects, from mild sedation to death. Barbiturates are effective as anxiolytics, hypnotics, and anticonvulsants, but have physical and psychological addiction potential as well as overdose potential among other possible adverse effects. They have largely been replaced by benzodiazepines and nonbenzodiazepines ('Z-drugs') in routine medical practice, particularly in the treatment of anxiety and insomnia, due to the significantly lower risk of addiction and overdose and the lack of an antidote for barbiturate overdose. Despite this, barbiturates are still in use for various purposes: in general anesthesia, epilepsy, treatment of acute migraines or cluster headaches, euthanasia, capital punishment, and assisted suicide. A barbiturate is a drug that acts as a central nervous system depressant, and can therefore produce a wide range of effects, from mild sedation to death. Barbiturates are effective as anxiolytics, hypnotics, and anticonvulsants, but have physical and psychological addiction potential as well as overdose potential among other possible adverse effects. They have largely been replaced by benzodiazepines and nonbenzodiazepines ('Z-drugs') in routine medical practice, particularly in the treatment of anxiety and insomnia, due to the significantly lower risk of addiction and overdose and the lack of an antidote for barbiturate overdose. Despite this, barbiturates are still in use for various purposes: in general anesthesia, epilepsy, treatment of acute migraines or cluster headaches, euthanasia, capital punishment, and assisted suicide. The name barbiturate originates from the fact that they are all chemical derivatives of barbituric acid. Barbiturates such as phenobarbital were long used as anxiolytics and hypnotics, but today have been largely replaced by benzodiazepines for these purposes because the latter are less toxic in drug overdose. However, barbiturates are still used as anticonvulsants (e.g., phenobarbital and primidone) and general anesthetics (e.g., sodium thiopental). Barbiturates in high doses are used for physician-assisted suicide, and in combination with a muscle relaxant for euthanasia and for capital punishment by lethal injection. Barbiturates are frequently employed as euthanizing agents in small-animal veterinary medicine. Sodium thiopental is an ultra-short-acting barbiturate that is marketed under the name Sodium Pentothal. It is often mistaken for 'truth serum', or sodium amytal, an intermediate-acting barbiturate that is used for sedation and to treat insomnia, but was also used in so-called sodium amytal 'interviews' where the person being questioned would be much more likely to provide the truth whilst under the influence of this drug. When dissolved in water, sodium amytal can be swallowed, or it can be administered by intravenous injection. The drug does not itself force people to tell the truth, but is thought to decrease inhibitions and slow creative thinking, making subjects more likely to be caught off guard when questioned, and increasing the possibility of the subject revealing information through emotional outbursts. Lying is somewhat more complex than telling the truth, especially under the influence of a sedative-hypnotic drug. The memory-impairing effects and cognitive impairments induced by sodium thiopental are thought to reduce a subject's ability to invent and remember lies. This practice is no longer considered legally admissible in court due to findings that subjects undergoing such interrogations may form false memories, putting the reliability of all information obtained through such methods into question. Nonetheless, it is still employed in certain circumstances by defense and law enforcement agencies as a 'humane' alternative to torture interrogation when the subject is believed to have information critical to the security of the state or agency employing the tactic. In 1988, the synthesis and binding studies of an artificial receptor binding barbiturates by six complementary hydrogen bonds was published. Since this first article, different kind of receptors were designed, as well as different barbiturates and cyanurates, not for their efficiencies as drugs but for applications in supramolecular chemistry, in the conception of materials and molecular devices. Sodium barbital and barbital have also been used as pH buffers for biological research, e.g., in immunoelectrophoresis or in fixative solutions. There are special risks to consider for older adults, women who are pregnant, and babies. When a person ages, the body becomes less able to rid itself of barbiturates. As a result, people over the age of sixty-five are at higher risk of experiencing the harmful effects of barbiturates, including drug dependence and accidental overdose. When barbiturates are taken during pregnancy, the drug passes through the placenta to the fetus. After the baby is born, it may experience withdrawal symptoms and have trouble breathing. In addition, nursing mothers who take barbiturates may transmit the drug to their babies through breast milk. A rare adverse reaction to barbiturates is Stevens–Johnson syndrome, which primarily affects the mucous membranes.

[ "Anesthesia", "Internal medicine", "Endocrinology", "Diabetes mellitus", "Pharmacology", "Seconal Sodium", "Barbiturate Intoxication", "Metharbital", "Barbiturate dependence", "VINBARBITAL SODIUM" ]
Parent Topic
Child Topic
    No Parent Topic