language-icon Old Web
English
Sign In

CD90

707021838ENSG00000154096ENSMUSG00000032011P04216P01831NM_006288NM_001311160NM_001311162NM_009382NP_001298089NP_001298091NP_006279NP_033408Thy-1 or CD90 (Cluster of Differentiation 90) is a 25–37 kDa heavily N-glycosylated, glycophosphatidylinositol (GPI) anchored conserved cell surface protein with a single V-like immunoglobulin domain, originally discovered as a thymocyte antigen. Thy-1 can be used as a marker for a variety of stem cells and for the axonal processes of mature neurons. Structural study of Thy-1 led to the foundation of the Immunoglobulin superfamily, of which it is the smallest member, and led to some of the initial biochemical description and characterization of a vertebrate GPI anchor and also the first demonstration of tissue specific differential glycosylation. Thy-1 or CD90 (Cluster of Differentiation 90) is a 25–37 kDa heavily N-glycosylated, glycophosphatidylinositol (GPI) anchored conserved cell surface protein with a single V-like immunoglobulin domain, originally discovered as a thymocyte antigen. Thy-1 can be used as a marker for a variety of stem cells and for the axonal processes of mature neurons. Structural study of Thy-1 led to the foundation of the Immunoglobulin superfamily, of which it is the smallest member, and led to some of the initial biochemical description and characterization of a vertebrate GPI anchor and also the first demonstration of tissue specific differential glycosylation. The antigen Thy-1 was the first T cell marker to be identified. Thy-1 was discovered by Reif and Allen in 1964 during a search for heterologous antisera against mouse leukemia cells, and was demonstrated by them to be present on murine thymocytes, on T lymphocytes, and on neuronal cells. It was originally named theta (θ) antigen, then Thy-1 (THYmocyte differentiation antigen 1) due to its prior identification in thymocytes (precursors of T cells in the thymus). The human homolog was isolated in 1980 as a 25kDa protein (p25) of T-lymphoblastoid cell line MOLT-3 binding with anti-monkey-thymocyte antisera. The discovery of Thy-1 in mice and humans led to the subsequent discovery of many other T cell markers, which is very significant to the field of immunology since T cells (along with B cells) are the major cellular components of the adaptive immune response. Thy-1 has been conserved throughout vertebrate evolution and even in some invertebrates, with homologs described in many species like squid, frogs, chickens, mice, rats, dogs, and humans. The Thy-1 gene is located at human chromosome 11q22.3 (mouse chromosome 9qA5.1). In AceView, it covers 6.82 kb, from 119294854 to 119288036 (NCBI 37, August 2010), on the reverse strand. This locus is very close to CD3 & CD56/NCAM genes. Some believe that there may be a functional significance of both this gene and CD3 delta subunit (T3D) mapping to chromosome 11q in man and chromosome 9 in mouse, though there is no homology (in fact this speculation led to its localization in chromosome 11q - the human chromosome region syntenic to mouse chromosome 9 which harbored T3D). In mice, there are two alleles: Thy1.1 (Thy 1a, CD90.1) and Thy1.2 (Thy 1b, CD90.2). They differ by only one amino acid at position 108; an arginine in Thy-1.1 and a glutamine in Thy-1.2. Thy 1.2 is expressed by most strains of mice, whereas Thy1.1 is expressed by some like AKR/J and PL mouse strains. The 25-kDa core protein (excluding the heavy glycosylation) of rodent Thy-1 is 111 or 112 amino acids in length, and is N-glycosylated at three sites (In contrast to only two glycosylation sites for human Thy-1). The 162aa (murine, 161 for human) Thy1 precursor has 19 amino acid (aa 1-19) signal sequence and 31 amino acid (aa 132-162) C-terminal transmembrane domain that is present in pro form but removed when transferring the 112 amino acid (aa 20-131) mature peptide to GPI anchor which would attach through the aa 131. Some of the common monoclonal antibodies used to detect this protein are clones OX7, 5E10, K117 and L127.There have been some reports of Thy1 monoclonal antibodies cross reacting with some cytoskeletal elements: anti Thy-1.2 with actin in marsupial, murine, and human cells and anti Thy-1.1 with vimentin, and were suggested to be due to sequence homology by studies done more than 20 years back. Thy-1, like many other GPI anchored proteins can be shed by special types of Phospholipase C e.g. PI-PLC (phosphatidyl-Inositol Phospholipase C, or PLC β). it can also be involved in cell to cell transfer of GPI anchored proteins like CD55 and CD59. Thy-1 is one of the most heavily glycosylated membrane proteins with a carbohydrate content up to 30% of its molecular mass. Thy1 in most species has 3 N-glycosylation sites (Asn 23, 74 and 98) but no O-glycosylation. The composition of Thy-1 carbohydrate moieties varies considerably between different tissues or even among cells of the same lineage at different stages of differentiation: e.g., galactosamine only in brain Thy-1, sialic acid in thymic Thy-1 in far excess than brain Thy-1, that too increasing in parallel with T cell maturation. In this regard it has yet another historic association: Thy1 happens to be the first glycoprotein in which cell type specificity of variant glycosylation on an invariant protein was demonstrated. Analysis of Differencial glycosylation of Thy-1 from brain and thymus showed that all the complex N-linked structures differed between the two forms, superimposed upon a site specific common core. In case of Thy1 this core pattern was constituted by Asn23 carrying mostly oligomannose structures, Asn74 carrying the most extended complex structures, and Asn98 carrying smaller complex structure. The structure of the sugar residues in the GPI anchor and their associated esterified structures (e.g. additional fatty acids and alcohols) also can be cell type and species specific. Thy1 expression varies between species. Amongst the cells reported to generally express Thy-1 are thymocytes (precursor of T cells in the thymus) & CD34(+) prothymocytes; neurons, mesenchymal stem cells, hematopoietic stem cells, NK cells, murine T-cells, endothelium (mainly in high endothelial venules or HEVs where diapedesis takes place), renal glomerular mesangial cells, circulating metastatic melanoma cells, follicular dendritic cells (FDC), a fraction of fibroblasts and myofibroblasts.

[ "CD34", "CD44", "Phenotype", "Mesenchymal stem cell", "Flow cytometry", "Spore-like cells" ]
Parent Topic
Child Topic
    No Parent Topic