language-icon Old Web
English
Sign In

Watt balance

A Kibble balance or watt balance is an electromechanical measuring instrument that measures the weight of a test object very precisely by the electric current and voltage needed to produce a compensating force. It is a metrological instrument that can realize the new definition of the kilogram unit of mass based on fundamental constants, termed an electronic or electrical kilogram. A Kibble balance or watt balance is an electromechanical measuring instrument that measures the weight of a test object very precisely by the electric current and voltage needed to produce a compensating force. It is a metrological instrument that can realize the new definition of the kilogram unit of mass based on fundamental constants, termed an electronic or electrical kilogram. The name watt balance comes from the fact that the weight of the test mass is proportional to the product of current and voltage, which is measured in units of watts. In June 2016, two months after the death of the inventor of the balance, Bryan Kibble, metrologists of the Consultative Committee for Units of the International Committee for Weights and Measures agreed to rename the device in his honor. Since 1889, the definition of the kilogram was based on a physical object known as the International Prototype of the Kilogram (IPK).In 2013, accuracy criteria were agreed upon by the General Conference on Weights and Measures (CGPM) for replacing this definition with one based on the use of a Kibble balance. After these criteria had been achieved, the CGPM voted unanimously on November 16, 2018 to change the definition of the kilogram and several other units, effective May 20, 2019, to coincide with World Metrology Day. The Kibble balance is a more accurate version of the ampere balance, an early current measuring instrument in which the force between two current-carrying coils of wire is measured and then used to calculate the magnitude of the current. In this new application, the balance will be used in the opposite sense; the current in the coils will be measured using the new standard definition of the Planck constant to 'measure mass without recourse to the IPK or any physical object.' The balance determines the weight of the object; then the mass can be calculated by accurately measuring the local Earth's gravity (the net acceleration combining gravitational and centrifugal effects) with a gravimeter. Thus the mass of the object is defined in terms of a current and a voltage, as described below—an 'electronic kilogram.' The principle that is used in the Kibble balance was proposed by Bryan Kibble of the UK National Physical Laboratory (NPL) in 1975 for measurement of the gyromagnetic ratio. The main weakness of the ampere balance method is that the result depends on the accuracy with which the dimensions of the coils are measured. The Kibble balance method has an extra calibration step in which the effect of the geometry of the coils is eliminated, removing the main source of uncertainty. This extra step involves moving the force coil through a known magnetic flux at a known speed. This step was performed in 1990. The Kibble balance originating from the National Physical Laboratory was transferred to the National Research Council of Canada (NRC) in 2009, where scientists from the two labs continued to refine the instrument.In 2014, NRC researchers published the most accurate measurement of the Planck constant at that time, with a relative uncertainty of 1.8×10−8. A final paper by NRC researchers was published in May 2017, presenting a measurement of Planck's constant with an uncertainty of only 9.1 parts per billion, the measurement with the least uncertainty to date. Other Kibble balance experiments are conducted in the US National Institute of Standards and Technology (NIST), the Swiss Federal Office of Metrology (METAS) in Berne, the International Bureau of Weights and Measures (BIPM) near Paris and Laboratoire national de métrologie et d’essais (LNE) in Trappes, France. A conducting wire of length L that carries an electric current I perpendicular to a magnetic field of strength B experiences a Lorentz force equal to the product of these variables. In the Kibble balance, the current is varied so that this force counteracts the weight w of a standard mass m. This principle is derived from the ampere balance. w is given by the mass m multiplied by the local gravitational acceleration g. Thus, The Kibble balance avoids the problems of measuring B and L in a second calibration step. The same wire (in practice, a coil) is moved through the same magnetic field at a known speed v. By Faraday's law of induction, a potential difference U is generated across the ends of the wire, which equals BLv. Thus

[ "Planck constant", "Kilogram" ]
Parent Topic
Child Topic
    No Parent Topic