language-icon Old Web
English
Sign In

Radio direction finder

A radio direction finder (RDF) is a device for finding the direction, or bearing, to a radio source. The act of measuring the direction is known as radio direction finding or sometimes simply direction finding (DF). Using two or more measurements from different locations, the location of an unknown transmitter can be determined; alternately, using two or more measurements of known transmitters, the location of a vehicle can be determined. RDF is widely used as a radio navigation system, especially with boats and aircraft. A radio direction finder (RDF) is a device for finding the direction, or bearing, to a radio source. The act of measuring the direction is known as radio direction finding or sometimes simply direction finding (DF). Using two or more measurements from different locations, the location of an unknown transmitter can be determined; alternately, using two or more measurements of known transmitters, the location of a vehicle can be determined. RDF is widely used as a radio navigation system, especially with boats and aircraft. RDF systems can be used with any radio source, although the size of the receiver antennas are a function of the wavelength of the signal; very long wavelengths (low frequencies) require very large antennas, and are generally used only on ground-based systems. These wavelengths are nevertheless very useful for marine navigation as they can travel very long distances and 'over the horizon', which is valuable for ships when the line-of-sight may be only a few tens of kilometres. For aircraft, where the horizon at altitude may extend to hundreds of kilometres, higher frequencies can be used, allowing much smaller antennas. An automatic direction finder, often capable of being tuned to commercial AM radio transmitters, is a feature of almost all modern aircraft. For the military, RDF systems are a key component of signals intelligence systems and methodologies. The ability to locate the position of an enemy transmitter has been invaluable since World War I, and it played a key role in World War II's Battle of the Atlantic. It is estimated that the UK's advanced 'huff-duff' systems were directly or indirectly responsible for 24% of all U-Boats sunk during the war. Modern systems often use phased array antennas to allow rapid beam forming for highly accurate results. These are generally integrated into a wider electronic warfare suite. Several distinct generations of RDF systems have been used over time, following new developments in electronics. Early systems used mechanically rotated antennas that compared signal strengths from different directions, and several electronic versions of the same concept followed. Modern systems use the comparison of phase or doppler techniques which are generally simpler to automate. Modern pseudo-Doppler direction finder systems consist of a number of small antennas fixed to a circular card, with all of the processing occurring in software. Early British radar sets were also referred to as RDF, which was a deception tactic. However, the terminology was not inaccurate; the Chain Home systems used separate omnidirectional broadcasters and large RDF receivers to determine the location of the targets. The earliest experiments in RDF were carried out in 1888 when Heinrich Hertz discovered the directionality of an open loop of wire used as an antenna. When the antenna was aligned so it pointed at the signal it produced maximum gain, and produced zero signal when face on. This meant there was always an ambiguity in the location of the signal, it would produce the same output if the signal was in front or back of the antenna. Later experimenters also used dipole antennas, which worked in the opposite sense, reaching maximum gain at right angles and zero when aligned. RDF systems using mechanically swung loop or dipole antennas were common by the turn of the 20th century. Prominent examples were patented by John Stone Stone in 1902 (U.S. Patent 716,134) and Lee de Forest in 1904 (U.S. Patent 771,819), among many other examples. By the early 1900s, many experimenters were looking for ways to use this concept for locating the position of a transmitter. Early radio systems generally used medium wave and longwave signals. Longwave in particular had good long-distance transmission characteristics due to their limited interaction with the ground, and thereby provided excellent great circle route ground wave propagation that pointed directly to the transmitter. Methods of performing RDF on longwave signals was a major area of research during the 1900s and 1910s. Antennas are generally sensitive to signals only when they have a length that is a significant portion of the wavelength, or larger. Most antennas are at least ¼ of the wavelength, more commonly ½ - the half-wave dipole is a very common design. For longwave use, this resulted in loop antennas tens of feet on a side, often with more than one loop connected together to improve the signal. Another solution to this problem was developed by the Marconi company in 1905. This consisted of a number of horizontal wires or rods arranged to point outward from a common center point. A movable switch could connect opposite pairs of these wires to form a dipole, and by rotating the switch the operator could hunt for the strongest signal. The US Navy overcame this problem, to a point, by mounting antennas on ships and sailing in circles. Such systems were unwieldily and impractical for many uses. A key improvement in the RDF concept was introduced by Ettore Bellini and Alessandro Tosi in 1909 (U.S. Patent 943,960). Their system used two such antennas, typically triangular loops, arranged at right angles. The signals from the antennas were sent into coils wrapped around a wooden frame about the size of a pop can, where the signals were re-created in the area between the coils. A separate loop antenna located in this area could then be used to hunt for the direction, without moving the main antennas. This made RDF so much more practical that it was soon being used for navigation on a wide scale, often as the first form of aerial navigation available, with ground stations homing in on the aircraft's radio set. Bellini-Tosi direction finders were widespread from the 1920s into the 1950s.

[ "Antenna (radio)", "Direction finding" ]
Parent Topic
Child Topic
    No Parent Topic