language-icon Old Web
English
Sign In

Pacific decadal oscillation

The Pacific Decadal Oscillation (PDO) is a robust, recurring pattern of ocean-atmosphere climate variability centered over the mid-latitude Pacific basin. The PDO is detected as warm or cool surface waters in the Pacific Ocean, north of 20°N. Over the past century, the amplitude of this climate pattern has varied irregularly at interannual-to-interdecadal time scales (meaning time periods of a few years to as much as time periods of multiple decades). There is evidence of reversals in the prevailing polarity (meaning changes in cool surface waters versus warm surface waters within the region) of the oscillation occurring around 1925, 1947, and 1977; the last two reversals corresponded with dramatic shifts in salmon production regimes in the North Pacific Ocean. This climate pattern also affects coastal sea and continental surface air temperatures from Alaska to California. The Pacific Decadal Oscillation (PDO) is a robust, recurring pattern of ocean-atmosphere climate variability centered over the mid-latitude Pacific basin. The PDO is detected as warm or cool surface waters in the Pacific Ocean, north of 20°N. Over the past century, the amplitude of this climate pattern has varied irregularly at interannual-to-interdecadal time scales (meaning time periods of a few years to as much as time periods of multiple decades). There is evidence of reversals in the prevailing polarity (meaning changes in cool surface waters versus warm surface waters within the region) of the oscillation occurring around 1925, 1947, and 1977; the last two reversals corresponded with dramatic shifts in salmon production regimes in the North Pacific Ocean. This climate pattern also affects coastal sea and continental surface air temperatures from Alaska to California. During a 'warm', or 'positive', phase, the west Pacific becomes cooler and part of the eastern ocean warms; during a 'cool' or 'negative' phase, the opposite pattern occurs. The Pacific Decadal Oscillation was named by Steven R. Hare, who noticed it while studying salmon production pattern results in 1997. The Pacific Decadal Oscillation index is the leading empirical orthogonal function (EOF) of monthly sea surface temperature anomalies (SST-A) over the North Pacific (poleward of 20°N) after the global average sea surface temperature has been removed. This PDO index is the standardized principal component time series. A PDO 'signal' has been reconstructed as far back as 1661 through tree-ring chronologies in the Baja California area. Several studies have indicated that the PDO index can be reconstructed as the superimposition of tropical forcing and extra-tropical processes. Thus, unlike ENSO (El Niño Southern Oscillation), the PDO is not a single physical mode of ocean variability, but rather the sum of several processes with different dynamic origins. At inter-annual time scales the PDO index is reconstructed as the sum of random and ENSO induced variability in the Aleutian low, whereas on decadal timescales ENSO teleconnections, stochastic atmospheric forcing and changes in the North Pacific oceanic gyre circulation contribute approximately equally. Additionally sea surface temperature anomalies have some winter to winter persistence due to the reemergence mechanism. ENSO can influence the global circulation pattern thousands of kilometers away from the equatorial Pacific through the 'atmospheric bridge'. During El Nino events, deep convection and heat transfer to the troposphere is enhanced over the anomalously warm sea surface temperature, this ENSO-related tropical forcing generates Rossby waves that propagate poleward and eastward and are subsequently refracted back from the pole to the tropics. The planetary waves form at preferred locations both in the North and South Pacific Ocean, and the teleconnection pattern is established within 2–6 weeks. ENSO driven patterns modify surface temperature, humidity, wind, and the distribution of clouds over the North Pacific that alter surface heat, momentum, and freshwater fluxes and thus induce sea surface temperature, salinity, and mixed layer depth (MLD) anomalies. The atmospheric bridge is more effective during boreal winter when the deepened Aleutian low results in stronger and cold northwesterly winds over the central Pacific and warm/humid southerly winds along the North American west coast, the associated changes in the surface heat fluxes and to a lesser extent Ekman transport creates negative sea surface temperature anomalies and a deepened MLD in the central pacific and warm the ocean from the Hawaii to the Bering Sea.

[ "El Niño Southern Oscillation", "Sea surface temperature", "pacific ocean", "South Pacific High", "North Pacific Oscillation", "North Pacific High", "Interdecadal Pacific Oscillation", "pacific decadal oscillation index" ]
Parent Topic
Child Topic
    No Parent Topic