language-icon Old Web
English
Sign In

Bedrock river

A bedrock river is a river that has little to no alluvium mantling the bedrock over which it flows. However, most bedrock rivers are not pure forms; they are a combination of a bedrock channel and an alluvial channel. The way one can distinguish between bedrock rivers and alluvial rivers is through the extent of sediment cover. A bedrock river is a river that has little to no alluvium mantling the bedrock over which it flows. However, most bedrock rivers are not pure forms; they are a combination of a bedrock channel and an alluvial channel. The way one can distinguish between bedrock rivers and alluvial rivers is through the extent of sediment cover. The extent of sediment coverage is based upon the sediment flux supplied to the channel and the channel transport capacity. Bedrock rivers are typically found in upland or mountainous regions. Their formation can have several erosional factors. Bedrock rivers are also one of the only ways to study incision into bedrock that is not related to glaciers. Bedrock incision can be caused by tectonic plate movement. As the land is uplifted the river is forced to incise into the bedrock to keep flowing. Incision can be carried out through a variety of erosional processes. The type of bedrock may change as a river flows downstream, affecting erosional processes. The main processes being: stream power, abrasion, quarrying, wedging, and dissolution. These rivers are a combination of all of these processes but are dependent upon the individual river and its type of bedrock. Stream power is the process energy from the water converted into kinetic energy due to the steepening in slope. When water is being transported down a channel, it is doing so by gravitational potential energy. Due to the laws of conservation of energy, energy that is lost traveling downstream must be transformed into another type of energy.The energy form that is it transformed into is the kinetic energy of the water beating on the bedrock. The rate of the potential energy loss is calculated in the stream power of the river. The stream power equation is: Ω = ρ g Q S {displaystyle Omega =mathrm { ho {}gQS} } This equation suggests that stream power might be the single most important factor in bedrock incision. In an alluvial river the stream power would be more of a transport because it would be picking up loose material and depositing it, but with a constant influx of sediment it would not be incising. Abrasion is the process by which sediments are transported in the flow. The rate of erosion done using abrasion is affected by the strength of the bedrock. Abrasion is also affected by the amount of sediment load present in the river. Too much sediment and most of the particles will not have enough energy; too little and not enough of the particles will come into contact with the bed. The process can erode individual grains, or flakes from the rocks surface. The most common indicators of abrasion is potholes in the bedrock or a trough-like shape to the river. There are three types of sediment transport in a fluvial process: dissolved load, suspended load, and bed load. The process that most affects a bedrock river is the suspended load. Suspended load is the grains that are light enough to be carried in the water and do not contact the bed of the river unless there is an obstruction or topographic change in the bed. The way these particles erode a bedrock river is by contact with these obstructions. Being as they are carried as part of the river flow they have a significantly higher kinetic energy and coming into contact with an abnormality in the river bed can cause more damage than a larger grain with lower energy. The grain size that is normally held in the suspended load ranges from very fine to fine; clays and silts.

[ "Alluvium", "Fluvial", "Stream power law" ]
Parent Topic
Child Topic
    No Parent Topic