Alternaria solani is a fungal pathogen, that produces a disease in tomato and potato plants called early blight. The pathogen produces distinctive 'bullseye' patterned leaf spots and can also cause stem lesions and fruit rot on tomato and tuber blight on potato. Despite the name 'early,' foliar symptoms usually occur on older leaves. If uncontrolled, early blight can cause significant yield reductions. Primary methods of controlling this disease include preventing long periods of wetness on leaf surfaces and applying fungicides. Geographically, A. solani is problematic in tomato production areas east of the Rocky Mountains and is generally not an issue in the less humid Pacific or inter-mountain regions. A. solani is also present in most potato production regions every year but has a significant effect on yield only when frequent wetting of foliage favors symptom development. Alternaria solani infects stems, leaves and fruits of tomato (Solanum lycopersicum L.), potato (S. tuberosum), eggplant (S. melongena L.), bell pepper and hot pepper (Capsicum spp.), and other members of the Solanum family. Distinguishing symptoms of A. solani include leaf spot and defoliation, which are most pronounced in the lower canopy. In some cases, A. solani may also cause damping off. On tomato, foliar symptoms of A. solani generally occur on the oldest leaves and start as small lesions that are brown to black in color. These leaf spots resemble concentric rings - a distinguishing characteristic of the pathogen - and measure up to 1.3 cm (0.51 inches) in diameter. Both the area around the leaf spot and the entire leaf may become yellow or chlorotic. Under favorable conditions (e.g., warm weather with short or abundant dews), significant defoliation of lower leaves may occur, leading to sunscald of the fruit. As the disease progresses, symptoms may migrate to the plant stem and fruit. Stem lesions are dark, slightly sunken and concentric in shape. Basal girdling and death of seedlings may occur, a symptom known as collar rot. In fruit, A. solani invades at the point of attachment to the stem as well as through growth cracks and wounds made by insects, infecting large areas of the fruit Fruit spots are similar in appearance to those on leaves – brown with dark concentric circles. Mature lesions are typically covered by a black, velvety mass of fungal spores that may be visible under proper light conditions. In potato, primary damage by A. solani is attributed to premature defoliation of potato plants, which results in tuber yield reduction. Initial infection occurs on older leaves, with concentric dark brown spots developing mainly in the leaf center. The disease progresses during the period of potato vegetation, and infected leaves turn yellow and either dry out or fall off the stem. On stems, spots are gaunt with no clear contours (as compared to leaf spots). Tuber lesions are dry, dark and pressed into the tuber surface, with the underlying flesh turning dry, leathery and brown. During storage, tuber lesions may enlarge and tubers may become shriveled. Disease severity due to A. solani is highest when potato plants are injured, under stress or lack proper nutrition. High levels of nitrogen, moderate potassium and low phosphorus in the soil can reduce susceptibility of infection by the pathogen. Alternaria solani is a deuteromycete with a polycyclic life cycle. Alternaria solani reproduces asexually by means of conidia. A.solani is generally considered to be a necrotrophic pathogen, i.e. it kills the host tissue using cell wall degrading enzymes and toxins and feeds on the dead plant cell material The life cycle starts with the fungus overwintering in crop residues or wild members of the Solanaceae family, such as black nightshade. In the spring, conidia are produced. Multicellular conidia are splashed by water or by wind onto an uninfected plant. The conidia infect the plant by entering through small wounds, stomata, or direct penetration. Infections usually start on older leaves close to the ground. The fungus takes time to grow and eventually forms a lesion. From this lesion, more conidia are created and released. These conidia infect other plants or other parts of the same plant within the same growing season. Every part of the plant can be infected and form lesions. This is especially important when fruit or tubers are infected as they can be used to spread the disease. In general, development of the pathogen can be aggravated by an increase in inoculum from alternative hosts such as weeds or other solanaceous species. Disease severity and prevalence are highest when plants are mature.