language-icon Old Web
English
Sign In

Doorbell

A doorbell is a signaling device typically placed near a door to a building's entrance. When a visitor presses a button the bell rings inside the building, alerting the occupant to the presence of the visitor. Although the first doorbells were mechanical, activated by pulling a cord, modern doorbells are electric, operated by a pushbutton switch. Modern doorbells often incorporate intercoms and miniature video cameras to increase security. A doorbell is a signaling device typically placed near a door to a building's entrance. When a visitor presses a button the bell rings inside the building, alerting the occupant to the presence of the visitor. Although the first doorbells were mechanical, activated by pulling a cord, modern doorbells are electric, operated by a pushbutton switch. Modern doorbells often incorporate intercoms and miniature video cameras to increase security. William Murdoch, a Scottish inventor, installed a number of his own innovations in his house, built in Birmingham in 1817; one of these was a loud doorbell, that worked using a piped system of compressed air. A precursor to the electric doorbell, specifically a bell that could be rung at a distance via an electric wire, was invented by Joseph Henry around 1831. By the early 1900s, electric doorbells had become commonplace. In most wired systems, a button on the outside next to the door, located around the height of the doorknob, activates a signaling device (usually a chime, bell, or buzzer) inside the building. Pressing the doorbell button, a single-pole, single-throw (SPST) pushbutton switch momentarily closes the doorbell circuit. One terminal of this button is wired to a terminal on a transformer. A doorbell transformer steps down the 120 or 240-volt AC electrical power to a lower voltage, typically 10 to 20 volts. The transformer's other terminal connects to one of three terminals on the signaling device. Another terminal is connected to a wire that travels to the other terminal on the button. Some signaling devices have a third terminal, which produces a different sound. If there is another doorbell button (typically near a back door), it is connected between the transformer and the third terminal. The transformer primary winding, being energized continuously, does consume a small amount (about 1 to 2 W) of standby power constantly; systems with lighted pushbutton switches may consume a similar amount of power per switch. The tradeoff is that the wiring to the button carries only safe, low voltage isolated from earth ground. A common signaling device is a chime unit consisting of two flat metal bar resonators, which are struck by plungers operated by two solenoids. The flat bars are tuned to two pleasing notes. When the doorbell button is pressed, the first solenoid's plunger strikes one bar, and when the button is released, a spring on the plunger pushes the plunger up, causing it to strike the other bar, creating a two-tone sound ('ding-dong'). If a second doorbell button is used, it is wired to the other solenoid, which strikes only one of the bars, to create a single-tone ('ding') sound. More elaborate doorbell chimes play a short musical tune, such as Westminster Quarters. Doorbells for hearing-impaired people use visual signaling devices — typically light bulbs — rather than audible signaling devices. Fully battery-powered wired models are also common, either using a two-bar design or an electric bell. These do not consume standby power, but require the user to change the batteries, which are usually large primary cells located in the bell box. Some doorbells are wireless. The doorbell button contains a built-in radio transmitter powered by a battery. When the button is pushed, the transmitter sends a radio signal to the receiver unit, which is plugged into a wall outlet inside the building. When the radio signal is detected by the receiver, it activates a sound chip that plays the sound of gongs through a loudspeaker—either a two-note 'ding-dong' sound or a longer chime sequence such as Westminster Quarters. To avoid interference by nearby wireless doorbells on the same radio frequency, the units can usually be set by the owner to different radio channels. In larger metropolitan cities, a trend has developed over the past decade that uses telephone technology to wirelessly signal doorbells as well as to answer the doors and remotely release electric strikes. In many cities throughout the world, this is the predominant form of doorbell signalling.

[ "Computer hardware", "Electrical engineering", "Embedded system", "Utility model", "Quantum mechanics" ]
Parent Topic
Child Topic
    No Parent Topic