language-icon Old Web
English
Sign In

Shape parameter

In probability theory and statistics, a shape parameter is a kind of numerical parameter of a parametric family of probability distributions. In probability theory and statistics, a shape parameter is a kind of numerical parameter of a parametric family of probability distributions. Specifically, a shape parameter is any parameter of a probability distribution that is neither a location parameter nor a scale parameter (nor a function of either or both of these only, such as a rate parameter). Such a parameter must affect the shape of a distribution rather than simply shifting it (as a location parameter does) or stretching/shrinking it (as a scale parameter does). Many estimators measure location or scale; however, estimators for shape parameters also exist. Most simply, they can be estimated in terms of the higher moments, using the method of moments, as in the skewness (3rd moment) or kurtosis (4th moment), if the higher moments are defined and finite. Estimators of shape often involve higher-order statistics (non-linear functions of the data), as in the higher moments, but linear estimators also exist, such as the L-moments. Maximum likelihood estimation can also be used.

[ "Applied mathematics", "Statistics", "Econometrics" ]
Parent Topic
Child Topic
    No Parent Topic