language-icon Old Web
English
Sign In

Standard solar model

The standard solar model (SSM) is a mathematical treatment of the Sun as a spherical ball of gas (in varying states of ionisation, with the hydrogen in the deep interior being a completely ionised plasma). This model, technically the spherically symmetric quasi-static model of a star, has stellar structure described by several differential equations derived from basic physical principles. The model is constrained by boundary conditions, namely the luminosity, radius, age and composition of the Sun, which are well determined. The age of the Sun cannot be measured directly; one way to estimate it is from the age of the oldest meteorites, and models of the evolution of the Solar System. The composition in the photosphere of the modern-day Sun, by mass, is 74.9% hydrogen and 23.8% helium. All heavier elements, called metals in astronomy, account for less than 2 percent of the mass. The SSM is used to test the validity of stellar evolution theory. In fact, the only way to determine the two free parameters of the stellar evolution model, the helium abundance and the mixing length parameter (used to model convection in the Sun), are to adjust the SSM to 'fit' the observed Sun. The standard solar model (SSM) is a mathematical treatment of the Sun as a spherical ball of gas (in varying states of ionisation, with the hydrogen in the deep interior being a completely ionised plasma). This model, technically the spherically symmetric quasi-static model of a star, has stellar structure described by several differential equations derived from basic physical principles. The model is constrained by boundary conditions, namely the luminosity, radius, age and composition of the Sun, which are well determined. The age of the Sun cannot be measured directly; one way to estimate it is from the age of the oldest meteorites, and models of the evolution of the Solar System. The composition in the photosphere of the modern-day Sun, by mass, is 74.9% hydrogen and 23.8% helium. All heavier elements, called metals in astronomy, account for less than 2 percent of the mass. The SSM is used to test the validity of stellar evolution theory. In fact, the only way to determine the two free parameters of the stellar evolution model, the helium abundance and the mixing length parameter (used to model convection in the Sun), are to adjust the SSM to 'fit' the observed Sun. A star is considered to be at zero age (protostellar) when it is assumed to have a homogeneous composition and to be just beginning to derive most of its luminosity from nuclear reactions (so neglecting the period of contraction from a cloud of gas and dust). To obtain the SSM, a one solar mass (M☉) stellar model at zero age is evolved numerically to the age of the Sun. The abundance of elements in the zero age solar model is estimated from primordial meteorites. Along with this abundance information, a reasonable guess at the zero-age luminosity (such as the present-day Sun's luminosity) is then converted by an iterative procedure into the correct value for the model, and the temperature, pressure and density throughout the model calculated by solving the equations of stellar structure numerically assuming the star to be in a steady state. The model is then evolved numerically up to the age of the Sun. Any discrepancy from the measured values of the Sun's luminosity, surface abundances, etc. can then be used to refine the model. For example, since the Sun formed, some of the helium and heavy elements have settled out of the photosphere by diffusion. As a result, the Solar photosphere now contains about 87% as much helium and heavy elements as the protostellar photosphere had; the protostellar Solar photosphere was 71.1% hydrogen, 27.4% helium, and 1.5% metals. A measure of heavy-element settling by diffusion is required for a more accurate model. The differential equations of stellar structure, such as the equation of hydrostatic equilibrium, are integrated numerically. The differential equations are approximated by difference equations. The star is imagined to be made up of spherically symmetric shells and the numerical integration carried out in finite steps making use of the equations of state, giving relationships for the pressure, the opacity and the energy generation rate in terms of the density, temperature and composition. Nuclear reactions in the core of the Sun change its composition, by converting hydrogen nuclei into helium nuclei by the proton-proton chain and (to a lesser extent in the Sun than in more massive stars) the CNO cycle. This increases the mean molecular weight in the core of the Sun, which should lead to a decrease in pressure. This does not happen as instead the core contracts. By the virial theorem half of the gravitational potential energy released by this contraction goes towards raising the temperature of the core, and the other half is radiated away. This increase in temperature also increases the pressure and restores the balance of hydrostatic equilibrium. The luminosity of the Sun is increased by the temperature rise, increasing the rate of nuclear reactions. The outer layers expand to compensate for the increased temperature and pressure gradients, so the radius also increases. No star is completely static, but stars stay on the main sequence (burning hydrogen in the core) for long periods. In the case of the Sun, it has been on the main sequence for roughly 4.6 billion years, and will become a red giant in roughly 6.5 billion years for a total main sequence lifetime of roughly 11 billion (1010) years. Thus the assumption of steady state is a very good approximation. For simplicity, the stellar structure equations are written without explicit time dependence, with the exception of the luminosity gradient equation: Here L is the luminosity, ε is the nuclear energy generation rate per unit mass and εν is the luminosity due to neutrino emission (see below for the other quantities). The slow evolution of the Sun on the main sequence is then determined by the change in the nuclear species (principally hydrogen being consumed and helium being produced). The rates of the various nuclear reactions are estimated from particle physics experiments at high energies, which are extrapolated back to the lower energies of stellar interiors (the Sun burns hydrogen rather slowly). Historically, errors in the nuclear reaction rates have been one of the biggest sources of error in stellar modelling. Computers are employed to calculate the varying abundances (usually by mass fraction) of the nuclear species. A particular species will have a rate of production and a rate of destruction, so both are needed to calculate its abundance over time, at varying conditions of temperature and density. Since there are many nuclear species, a computerised reaction network is needed to keep track of how all the abundances vary together. According to the Vogt-Russell theorem, the mass and the composition structure throughout a star uniquely determine its radius, luminosity, and internal structure, as well as its subsequent evolution (though this 'theorem' was only intended to apply to the slow, stable phases of stellar evolution and certainly does not apply to the transitions between stages and rapid evolutionary stages).The information about the varying abundances of nuclear species over time, along with the equations of state, is sufficient for a numerical solution by taking sufficiently small time increments and using iteration to find the unique internal structure of the star at each stage.

[ "Solar neutrino", "Solar neutrino problem" ]
Parent Topic
Child Topic
    No Parent Topic