language-icon Old Web
English
Sign In

Arctic methane release

Arctic methane release is the release of methane from seas and soils in permafrost regions of the Arctic. While it is a long-term natural process, methane release is exacerbated by global warming. This results in negative effects, as methane is itself a powerful greenhouse gas.The water trapped in the soil doesn't freeze completely even below 32 degrees Fahrenheit (0 degrees Celsius). The top layer of the ground, known as the active layer, thaws in the summer and refreezes in the winter, and it experiences a kind of sandwiching effect as it freezes. When temperatures are right around 32 degrees Fahrenheit – the so-called 'zero curtain' – the top and bottom of the active layer begin to freeze, while the middle remains insulated. Microorganisms in this unfrozen middle layer continue to break down organic matter and emit methane many months into the Arctic's cold period each year.'The results of our study indicate that the immense seeping found in this area is a result of natural state of the system. Understanding how methane interacts with other important geological, chemical and biological processes in the Earth system is essential and should be the emphasis of our scientific community,'The thawing of permafrost on the ocean floor is an ongoing process, likely to be exaggerated by the global warming of the world´s oceans. Arctic methane release is the release of methane from seas and soils in permafrost regions of the Arctic. While it is a long-term natural process, methane release is exacerbated by global warming. This results in negative effects, as methane is itself a powerful greenhouse gas. The Arctic region is one of the many natural sources of the greenhouse gas methane. Global warming accelerates its release, due to both release of methane from existing stores, and from methanogenesis in rotting biomass. Large quantities of methane are stored in the Arctic in natural gas deposits, permafrost, and as undersea clathrates. Permafrost and clathrates degrade on warming, thus large releases of methane from these sources may arise as a result of global warming. Other sources of methane include submarine taliks, river transport, ice complex retreat, submarine permafrost and decaying gas hydrate deposits. Concentrations in the Arctic atmosphere are higher by 8–10% than that in the Antarctic atmosphere. During cold glacier epochs, this gradient decreases to practically insignificant levels. Land ecosystems are considered the main sources of this asymmetry, although it has been suggested that 'the role of the Arctic Ocean is significantly underestimated.' Soil temperature and moisture levels have been found to be significant variables in soil methane fluxes in tundra environments. The release of methane from the Arctic is in itself a major contributor to global warming as a result of polar amplification. Recent observations in the Siberian arctic show increased rates of methane release from the Arctic seabed. Land-based permafrost, also in the Siberian arctic, was estimated in 2013 to release 17 million tonnes of methane per year – a significant increase on the 3.8 million tons estimated in 2006, and estimates before then of just 0.5 million tonnes. This compares to around 500 million tonnes released into the atmosphere annually from all sources. Shakhova et al. (2008) estimate that not less than 1,400 gigatonnes (Gt) of carbon is presently locked up as methane and methane hydrates under the Arctic submarine permafrost, and 5–10% of that area is subject to puncturing by open taliks. They conclude that 'release of up to 50 Gt of predicted amount of hydrate storage highly possible for abrupt release at any time'. That would increase the methane content of the planet's atmosphere by a factor of twelve. In 2008 the United States Department of Energy National Laboratory system identified potential clathrate destabilization in the Arctic as one of the most serious scenarios for abrupt climate change, which have been singled out for priority research. The US Climate Change Science Program released a report in late December 2008 estimating the gravity of the risk of clathrate destabilization, alongside three other credible abrupt climate change scenarios. Study findings based on NASA's CARVE mission concluded in 2015, that methane emissions in the Arctic during the cold season are higher than previously thought. The press release by JPL explained: Hong et al. (2017) studied the seepage from large mounds of hydrates in the shallow arctic seas at Storfjordrenna, in the Barents Sea close to Svalbard. They showed that though the temperature of the sea bed has fluctuated seasonally over the last century, between 1.8 and 4.8 °C, it has only affected release of methane to a depth of about 1.6 meters. Hydrates can be stable through the top 60 meters of the sediments and the current rapid releases came from deeper below the sea floor. They concluded that the increase in flux started hundreds to thousands of years ago well before the onset of warming that others speculated as its cause, and that these seepages are not increasing due to momentary warming. Summarizing his research, Hong stated: Further research by Klaus Wallmann et al. (2018) found that the hydrate release is due to the rebound of the sea bed after the ice melted. The methane dissociation began around 8,000 years ago when the land began to rise faster than the sea level, and the water as a result started to get shallower with less hydrostatic pressure. This dissociation therefore was a result of the uplift of the sea bed rather than anthropogenic warming. The amount of methane released by the hydrate dissociation was small. They found that the methane seeps originate not from the hydrates but from deep geological gas reservoirs (seepage from these formed the hydrates originally). They concluded that the hydrates acted as a dynamic seal regulating the methane emissions from the deep geological gas reservoirs and when they were dissociated 8,000 years ago, weakening the seal, this led to the higher methane release still observed today.

[ "Sediment", "Atmosphere", "Methane" ]
Parent Topic
Child Topic
    No Parent Topic