language-icon Old Web
English
Sign In

Homochirality

Homochirality is a uniformity of chirality, or handedness. Objects are chiral when they cannot be superposed on their mirror images. For example, the left and right hands of a human are approximately mirror images of each other but are not their own mirror images, so they are chiral. In biology, 19 of the 20 natural amino acids are homochiral, being L-chiral (left-handed), while sugars are D-chiral (right-handed). Homochirality can also refer to enantiopure substances in which all the constituents are the same enantiomer (a right-handed or left-handed version of an atom or molecule), but some sources discourage this use of the term. Homochirality is a uniformity of chirality, or handedness. Objects are chiral when they cannot be superposed on their mirror images. For example, the left and right hands of a human are approximately mirror images of each other but are not their own mirror images, so they are chiral. In biology, 19 of the 20 natural amino acids are homochiral, being L-chiral (left-handed), while sugars are D-chiral (right-handed). Homochirality can also refer to enantiopure substances in which all the constituents are the same enantiomer (a right-handed or left-handed version of an atom or molecule), but some sources discourage this use of the term. It is unclear whether homochirality has a purpose, however, it appears to be a form of information storage. One suggestion is that it reduces entropy barriers in the formation of large organized molecules. It has been experimentally verified that amino acids form large aggregates in larger abundance from an enantiopure samples of the amino acid than from racemic (enantiomerically mixed) ones. It is not clear whether homochirality emerged before or after life, and many mechanisms for its origin have been proposed. Some of these models propose three distinct steps: mirror-symmetry breaking creates a minute enantiomeric imbalance, chiral amplification builds on this imbalance, and chiral transmission is the transfer of chirality from one set of molecules to another. Amino acids are the building blocks of peptides and enzymes while sugar-peptide chains are the backbone of RNA and DNA. In biological organisms, amino acids appear almost exclusively in the left-handed form (L-amino acids) and sugars in the right-handed form (R-sugars). Since the enzymes catalyze reactions, they enforce homochirality on a great variety of other chemicals, including hormones, toxins, fragrances and food flavors.:493–494 Glycine is achiral, as are some other non-proteinogenic amino acids are either achiral (such as dimethylglycine) or of the D enantiomeric form. Biological organisms easily discriminate between molecules with different chiralities. This can affect physiological reactions such as smell and taste. Carvone, a terpenoid found in essential oils, smells like mint in its L-form and caraway in its R-form.:494 Limonene tastes like lemons when right-handed and oranges when left-handed.:168 Homochirality also affects the response to drugs. Thalidomide, in its left-handed form, cures morning sickness; in its right-handed form, it causes birth defects.:168 Unfortunately, even if a pure left-handed version is administered, some of it can convert to the right-handed form in the patient. Many drugs are available as both a racemic mixture (equal amounts of both chiralities) and an enantiopure drug (only one chirality). Depending on the manufacturing process, enantiopure forms can be more expensive to produce than stereochemical mixtures.:168 Chiral preferences can also be found at a macroscopic level. Snail shells can be right-turning or left-turning helices, but one form or the other is strongly preferred in a given species. In the edible snail Helix pomatia, only one out of 20,000 is left-helical.:61–62 The coiling of plants can have a preferred chirality and even the chewing motion of cows has a 10% excess in one direction. Known mechanisms for the production of non-racemic mixtures from racemic starting materials include: asymmetric physical laws, such as the electroweak interaction; asymmetric environments, such as those caused by circularly polarized light, quartz crystals, or the Earth's rotation; and statistical fluctuations during racemic synthesis. Once established, chirality would be selected for. A small enantiomeric excess can be amplified into a large one by asymmetric autocatalysis, such as in the Soai reaction. In asymmetric autocatalysis, the catalyst is a chiral molecule, which means that a chiral molecule is catalysing its own production. An initial enantiomeric excess, such as can be produced by polarized light, then allows the more abundant enantiomer to outcompete the other. One supposition is that the discovery of an enantiomeric imbalance in molecules in the Murchison meteorite supports an extraterrestrial origin of homochirality: there is evidence for the existence of circularly polarized light originating from Mie scattering on aligned interstellar dust particles which may trigger the formation of an enantiomeric excess within chiral material in space.:123–124 Interstellar and near-stellar magnetic fields can align dust particles in this fashion. Another speculation (the Vester-Ulbricht hypothesis) suggests that fundamental chirality of physical processes such as that of the beta decay (see Parity violation) leads to slightly different half-lives of biologically relevant molecules. Homochirality may also result from spontaneous absolute asymmetric synthesis.

[ "Enantiomer", "Enantiomeric excess", "Chirality (chemistry)", "Amino acid", "Spontaneous absolute asymmetric synthesis", "Soai reaction", "Diisopropylzinc", "Serine octamer cluster" ]
Parent Topic
Child Topic
    No Parent Topic