language-icon Old Web
English
Sign In

Crucible steel

Crucible steel is steel made by melting pig iron (cast iron), iron, and sometimes steel, often along with sand, glass, ashes, and other fluxes, in a crucible. In ancient times steel and iron were impossible to melt using charcoal or coal fires, which could not produce temperatures high enough. However, pig iron, having a higher carbon content thus a lower melting point, could be melted, and by soaking wrought iron or steel in the liquid pig-iron for a long time, the carbon content of the pig iron could be reduced as it slowly diffused into the iron. Crucible steel of this type was produced in South and Central Asia during the medieval era. This generally produced a very hard steel, but also a composite steel that was inhomogeneous, consisting of a very high-carbon steel (formerly the pig-iron) and a lower-carbon steel (formerly the wrought iron). This often resulted in an intricate pattern when the steel was forged, filed or polished, with possibly the most well-known examples coming from the wootz steel used in Damascus swords. Due to the use of fluxes the steel was often much higher in quality (lacking impurities) and in carbon content compared to other methods of steel production of the time. Techniques for production of high quality steel were developed by Benjamin Huntsman in England in the 18th century. Huntsman used coke rather than coal or charcoal, achieving temperatures high enough to melt steel and dissolve iron. Huntsman's process differed from some of the wootz processes in that it took a longer time to melt the steel and to cool it down and allowed more time for the diffusion of carbon. Huntsman's process used iron and steel as raw materials, in the form of blister steel, rather than direct conversion from cast iron as in puddling or the later Bessemer process. The ability to fully melt the steel removed any inhomogeneities in the steel, allowing the carbon to dissolve evenly into the liquid steel and negating the prior need for extensive blacksmithing in an attempt to achieve the same result. Similarly, it allowed steel to simply be poured into molds, or cast, for the first time. The homogeneous crystal structure of this cast steel improved its strength and hardness compared to preceding forms of steel. The use of fluxes allowed nearly complete extraction of impurities from the liquid, which could then simply float to the top for removal. This produced the first steel of modern quality, providing a means of efficiently changing excess wrought iron into useful steel. Huntsman's process greatly increased the European output of quality steel suitable for use in items like knives, tools, and machinery, helping to pave the way for the Industrial revolution. Iron alloys are most broadly divided by their carbon content: cast iron has 2-4% carbon impurities; wrought iron oxidizes away most of its carbon, to less than 0.1%. The much more valuable steel has a delicately intermediate carbon fraction, and its material properties range according to the carbon percentage: high carbon steel is stronger but more brittle than low carbon steel. Crucible steel sequesters the raw input materials from the heat source, allowing precise control of carburization (raising) or oxidation (lowering carbon content). Fluxes, such as limestone, could be added to the crucible to remove or promote sulfur, silicon, and other impurities, further altering its material qualities. Various methods were used to produce crucible steel. According to Islamic texts such as al-Tarsusi and Abu Rayhan Biruni, three methods are described for indirect production of steel. The medieval Islamic historian Abu Rayhan Biruni (c. 973–1050) provides the earliest reference of the production of Damascus steel. The first, and the most common, traditional method is solid state carburization of wrought iron. This is a diffusion process in which wrought iron is packed in crucibles or a hearth with charcoal, then heated to promote diffusion of carbon into the iron to produce steel. Carburization is the basis for the wootz process of steel.The second method is the decarburization of cast iron by removing carbon from the cast iron.The third method uses wrought iron and cast iron. In this process, wrought iron and cast iron may be heated together in a crucible to produce steel by fusion. In regard to this method Abu Rayhan Biruni states: 'this was the method used in Hearth'. It is proposed that the Indian method refers to Wootz carburization method; i.e., the Mysore or Tamil processes. Variations of co-fusion process have been found primarily in Persia and Central Asia but have also been found in Hyderabad, India called Deccani or Hyderabad process. For the carbon, a variety of organic materials are specified by the contemporary Islamic authorities, including pomegranate rinds, acorns, fruit skins like orange peel, leaves as well as the white of egg and shells. Slivers of wood are mentioned in some of the Indian sources, but significantly none of the sources mention charcoal. Crucible steel is generally attributed to production centres in India and Sri Lanka where it was produced using the so-called 'wootz' process, and it is assumed that its appearance in other locations was due to long distance trade. Only recently it has become apparent that places in Central Asia like Merv in Turkmenistan and Akhsiket in Uzbekistan were important centres of production of crucible steel. The Central Asian finds are all from excavations and date from the 8th to 12th centuries CE, while the Indian/Sri Lankan material is as early as 300 BCE. India's iron ore had trace vanadium and other alloying elements leading to increased hardenability in Indian crucible steel which was famous throughout the middle east for its ability to retain an edge. While crucible steel is more attributed to the Middle East in early times, swords forged from crucible steel have been discovered in Europe, particularly in Scandinavia. The swords in question have an ambiguous name inlaid into it, Ulfberht. These swords date to a 200-year period from the 9th century to the early 11th century. It is speculated by many that the process of making these blades originated in the Middle East and subsequently been traded during the Volga Trade Route days. In the first centuries of the Islamic period, some scientific studies on swords and steel appeared. The best known of these are by Jabir ibn Hayyan 8th century, al-Kindi 9th century, Al-Biruni in the early 11th century, al-Tarsusi in the late 12th century, and Fakhr-i-Mudabbir 13th century. Any of these contains far more information about Indian and damascene steels than appears in the entire surviving literature of classical Greece and Rome.

[ "Forensic engineering", "Composite material", "Metallurgy", "Crucible" ]
Parent Topic
Child Topic
    No Parent Topic