Temperature-dependent sex determination

Temperature-dependent sex determination (TSD) is a type of environmental sex determination in which the temperatures experienced during embryonic/larval development determine the sex of the offspring. It is only observed in reptiles and teleost fish. TSD differs from the chromosomal sex-determination systems common among vertebrates. It is the most popular and most studied type of environmental sex determination (ESD). Some other conditions, e.g. density, pH, and environmental background color, are also observed to alter sex ratio, which could be classified either as temperature-dependent sex determination or temperature-dependent sex differentiation, depending on the involved mechanisms. As sex-determining mechanisms, TSD and genetic sex determination (GSD) should be considered in an equivalent manner, which can lead to reconsidering the status of fish species that are claimed to have TSD when submitted to extreme temperatures instead of the temperature experienced during development in the wild, since changes in sex ratio with temperature variation are ecologically and evolutionally relevant. Temperature-dependent sex determination (TSD) is a type of environmental sex determination in which the temperatures experienced during embryonic/larval development determine the sex of the offspring. It is only observed in reptiles and teleost fish. TSD differs from the chromosomal sex-determination systems common among vertebrates. It is the most popular and most studied type of environmental sex determination (ESD). Some other conditions, e.g. density, pH, and environmental background color, are also observed to alter sex ratio, which could be classified either as temperature-dependent sex determination or temperature-dependent sex differentiation, depending on the involved mechanisms. As sex-determining mechanisms, TSD and genetic sex determination (GSD) should be considered in an equivalent manner, which can lead to reconsidering the status of fish species that are claimed to have TSD when submitted to extreme temperatures instead of the temperature experienced during development in the wild, since changes in sex ratio with temperature variation are ecologically and evolutionally relevant. While TSD has been observed in many reptile and fish species, the genetic differences between sexes and molecular mechanisms of TSD have not been disclosed. The cortisol-mediated pathway and epigenetic regulatory pathway are thought to be the potential mechanisms involved in TSD. The eggs are affected by the temperature at which they are incubated during the middle one-third of embryonic development. This critical period of incubation is known as the thermosensitive period (TSP). The specific time of sex-commitment is known due to several authors resolving histological chronology of sex differentiation in the gonads of turtles with TSD. The thermosensitive, or temperature-sensitive, period (TSP) is the period during development when sex is irreversibly determined. It is used in reference to species with temperature-dependent sex determination, such as crocodilians and turtles. The TSP typically spans the middle third of incubation with the endpoints defined by embryonic stage. The extent of the TSP varies a little among species, and development within the oviducts must be taken into account in species where the embryo is at a relatively late stage of development on egg laying (e.g. many lizards). Temperature pulses during the thermosensitive period are often sufficient to determine sex, but after the TSP, sex is unresponsive to temperature. After this period, however, sex cannot be reversed (see sex reversal). Within the mechanism, two distinct patterns have been discovered and named Pattern I and Pattern II. Pattern I is further divided into IA and IB. Pattern IA has a single transition zone, where eggs predominantly hatch males if incubated below this temperature zone, and predominantly hatch females if incubated above it. Pattern IA occurs in most turtles, with the transition between male-producing temperatures and female-producing temperatures occurring over a range of temperatures as little as 1–2°C. Pattern IB also has a single transition zone, but females are produced below it and males above it. Pattern IB occurs in the tuatara. Pattern II has two transition zones, with males dominating at intermediate temperatures and females dominating at both extremes. Pattern II occurs in some turtles, lizards, and crocodilians. Very near or at the pivotal temperature of sex determination, mixed sex ratios and (more rarely) intersex individuals. It has been proposed that essentially all modes of TSD are actually Pattern II and those that deviate from the expected female-male-female pattern are species whose nests have simply never been observed exposed to extreme temperature ranges on one end of the range or the other. The distinction between chromosomal sex-determination systems and TSD is often blurred because the sex of some species – such as the three-lined skink Bassiana duperreyi and the central bearded dragon Pogona vitticeps – is determined by sex chromosomes, but this is over-ridden by temperatures that are tolerable but extreme. Also, experiments conducted at the pivotal temperature, where temperature is equivocal in its influence, have demonstrated an underlying genetic predisposition to be one sex or the other.

[ "Sex ratio", "incubation temperature" ]
Parent Topic
Child Topic
    No Parent Topic