language-icon Old Web
English
Sign In

Foreign key

In the context of relational databases, a foreign key is a set of attributes subject to a certain kind of inclusion dependency constraint, specifically a constraint that the tuples consisting of the foreign key attributes in one relation, R, must also exist in some other (not necessarily distinct) relation, S, and furthermore that those attributes must also be a candidate key in S. In simpler words, a foreign key is a set of attributes that references a candidate key. For example, a table called TEAM may have an attribute, MEMBER_NAME, which is a foreign key referencing a candidate key, EMPLOYEE_NAME, in the EMPLOYEE table. Since MEMBER_NAME is a foreign key, any value existing as the name of a member in TEAM must also exist as an employee name in the EMPLOYEE table. In the context of relational databases, a foreign key is a set of attributes subject to a certain kind of inclusion dependency constraint, specifically a constraint that the tuples consisting of the foreign key attributes in one relation, R, must also exist in some other (not necessarily distinct) relation, S, and furthermore that those attributes must also be a candidate key in S. In simpler words, a foreign key is a set of attributes that references a candidate key. For example, a table called TEAM may have an attribute, MEMBER_NAME, which is a foreign key referencing a candidate key, EMPLOYEE_NAME, in the EMPLOYEE table. Since MEMBER_NAME is a foreign key, any value existing as the name of a member in TEAM must also exist as an employee name in the EMPLOYEE table. The table containing the foreign key is called the child table, and the table containing the candidate key is called the referenced or parent table. In database relational modeling and implementation, a candidate key is a set of zero or more attributes, the values of which are guaranteed to be unique for each tuple (row) in a relation. The value or combination of values of candidate key attributes for any tuple cannot be duplicated for any other tuple in that relation. Since the purpose of the foreign key is to identify a particular row of referenced table, it is generally required that the foreign key is equal to the candidate key in some row of the primary table, or else have no value (the NULL value.). This rule is called a referential integrity constraint between the two tables.Because violations of these constraints can be the source of many database problems, most database management systems provide mechanisms to ensure that every non-null foreign key corresponds to a row of the referenced table. For example, consider a database with two tables: a CUSTOMER table that includes all customer data and an ORDER table that includes all customer orders. Suppose the business requires that each order must refer to a single customer. To reflect this in the database, a foreign key column is added to the ORDER table (e.g., CUSTOMERID), which references the primary key of CUSTOMER (e.g. ID). Because the primary key of a table must be unique, and because CUSTOMERID only contains values from that primary key field, we may assume that, when it has a value, CUSTOMERID will identify the particular customer which placed the order. However, this can no longer be assumed if the ORDER table is not kept up to date when rows of the CUSTOMER table are deleted or the ID column altered, and working with these tables may become more difficult. Many real world databases work around this problem by 'inactivating' rather than physically deleting master table foreign keys, or by complex update programs that modify all references to a foreign key when a change is needed. Foreign keys play an essential role in database design. One important part of database design is making sure that relationships between real-world entities are reflected in the database by references, using foreign keys to refer from one table to another.Another important part of database design is database normalization, in which tables are broken apart and foreign keys make it possible for them to be reconstructed. Multiple rows in the referencing (or child) table may refer to the same row in the referenced (or parent) table. In this case, the relationship between the two tables is called a one to many relationship between the referenced table and the referencing table. In addition, the child and parent table may, in fact, be the same table, i.e. the foreign key refers back to the same table. Such a foreign key is known in SQL:2003 as a self-referencing or recursive foreign key. In database management systems, this is often accomplished by linking a first and second reference to the same table. A table may have multiple foreign keys, and each foreign key can have a different parent table. Each foreign key is enforced independently by the database system. Therefore, cascading relationships between tables can be established using foreign keys. Likewise, foreign keys can be defined as part of the CREATE TABLE SQL statement.

[ "Relational database", "Database design", "SQL", "Table (database)", "Single Table Inheritance" ]
Parent Topic
Child Topic
    No Parent Topic