Two-body problem in general relativity

The two-body problem in general relativity is the determination of the motion and gravitational field of two bodies as described by the field equations of general relativity. Solving the Kepler problem is essential to calculate the bending of light by gravity and the motion of a planet orbiting its sun. Solutions are also used to describe the motion of binary stars around each other, and estimate their gradual loss of energy through gravitational radiation. It is customary to assume that both bodies are point-like, so that tidal forces and the specifics of their material composition can be neglected. The two-body problem in general relativity is the determination of the motion and gravitational field of two bodies as described by the field equations of general relativity. Solving the Kepler problem is essential to calculate the bending of light by gravity and the motion of a planet orbiting its sun. Solutions are also used to describe the motion of binary stars around each other, and estimate their gradual loss of energy through gravitational radiation. It is customary to assume that both bodies are point-like, so that tidal forces and the specifics of their material composition can be neglected. General relativity describes the gravitational field by curved space-time; the field equations governing this curvature are nonlinear and therefore difficult to solve in a closed form. No exact solutions of the Kepler problem have been found, but an approximate solution has: the Schwarzschild solution. This solution pertains when the mass M of one body is overwhelmingly greater than the mass m of the other. If so, the larger mass may be taken as stationary and the sole contributor to the gravitational field. This is a good approximation for a photon passing a star and for a planet orbiting its sun. The motion of the lighter body (called the 'particle' below) can then be determined from the Schwarzschild solution; the motion is a geodesic ('shortest path between two points') in the curved space-time. Such geodesic solutions account for the anomalous precession of the planet Mercury, which is a key piece of evidence supporting the theory of general relativity. They also describe the bending of light in a gravitational field, another prediction famously used as evidence for general relativity. If both masses are considered to contribute to the gravitational field, as in binary stars, the Kepler problem can be solved only approximately. The earliest approximation method to be developed was the post-Newtonian expansion, an iterative method in which an initial solution is gradually corrected. More recently, it has become possible to solve Einstein's field equation using a computer instead of mathematical formulae. As the two bodies orbit each other, they will emit gravitational radiation; this causes them to lose energy and angular momentum gradually, as illustrated by the binary pulsar PSR B1913+16. For binary black holes numerical solution of the two body problem was achieved after four decades of research, in 2005, when three groups devised the breakthrough techniques. The Kepler problem derives its name from Johannes Kepler, who worked as an assistant to the Danish astronomer Tycho Brahe. Brahe took extraordinarily accurate measurements of the motion of the planets of the Solar System. From these measurements, Kepler was able to formulate Kepler's laws, the first modern description of planetary motion: Kepler published the first two laws in 1609 and the third law in 1619. They supplanted earlier models of the Solar System, such as those of Ptolemy and Copernicus. Kepler's laws apply only in the limited case of the two-body problem. Voltaire and Émilie du Châtelet were the first to call them 'Kepler's laws'. Nearly a century later, Isaac Newton had formulated his three laws of motion. In particular, Newton's second law states that a force F applied to a mass m produces an acceleration a given by the equation F=ma. Newton then posed the question: what must the force be that produces the elliptical orbits seen by Kepler? His answer came in his law of universal gravitation, which states that the force between a mass M and another mass m is given by the formula where r is the distance between the masses and G is the gravitational constant. Given this force law and his equations of motion, Newton was able to show that two point masses attracting each other would each follow perfectly elliptical orbits. The ratio of sizes of these ellipses is m/M, with the larger mass moving on a smaller ellipse. If M is much larger than m, then the larger mass will appear to be stationary at the focus of the elliptical orbit of the lighter mass m. This model can be applied approximately to the Solar System. Since the mass of the Sun is much larger than those of the planets, the force acting on each planet is principally due to the Sun; the gravity of the planets for each other can be neglected to first approximation. If the potential energy between the two bodies is not exactly the 1/r potential of Newton's gravitational law but differs only slightly, then the ellipse of the orbit gradually rotates (among other possible effects). This apsidal precession is observed for all the planets orbiting the Sun, primarily due to the oblateness of the Sun (it is not perfectly spherical) and the attractions of the other planets to one another. The apsides are the two points of closest and furthest distance of the orbit (the periapsis and apoapsis, respectively); apsidal precession corresponds to the rotation of the line joining the apsides. It also corresponds to the rotation of the Laplace–Runge–Lenz vector, which points along the line of apsides.

[ "Numerical relativity", "Introduction to the mathematics of general relativity", "Equivalence principle", "Four-force", "Penrose–Hawking singularity theorems", "Four-velocity", "Ehrenfest paradox", "Mass in general relativity", "ADM formalism" ]
Parent Topic
Child Topic
    No Parent Topic