language-icon Old Web
English
Sign In

Monazite

Monazite is a reddish-brown phosphate mineral containing rare-earth metals. It occurs usually in small isolated crystals. It has a hardness of 5.0 to 5.5 on the Mohs scale of mineral hardness and is relatively dense, about 4.6 to 5.7 g/cm3. There are at least four different kinds of monazite, depending on relative elemental composition of the mineral: Monazite is a reddish-brown phosphate mineral containing rare-earth metals. It occurs usually in small isolated crystals. It has a hardness of 5.0 to 5.5 on the Mohs scale of mineral hardness and is relatively dense, about 4.6 to 5.7 g/cm3. There are at least four different kinds of monazite, depending on relative elemental composition of the mineral: The elements in parentheses are listed in the order of their relative proportion within the mineral: lanthanum is the most common rare-earth element in monazite-(La), and so forth. Silica (SiO2) is present in trace amounts, as well as small amounts of uranium and thorium. Due to the alpha decay of thorium and uranium, monazite contains a significant amount of helium, which can be extracted by heating. Monazite is an important ore for thorium, lanthanum, and cerium. It is often found in placer deposits. India, Madagascar, and South Africa have large deposits of monazite sands. The deposits in India are particularly rich in monazite. Monazite is radioactive due to the presence of thorium and, less commonly, uranium. Because of its radioactive nature, monazite is used for monazite geochronology to study geological events, such as crystallization, heating, or deformation of the rocks containing monazite. The name monazite comes from the Greek μονάζειν (to be solitary), via German Monazit, in allusion to its isolated crystals. All monazites adopt the same structure, meaning that the connectivity of the atoms is very similar to other compounds of the type M(III)PO4. The M(III) centers have a distorted coordination sphere being surrounded by eight oxides with M–O distances around 2.6 Å in length. The phosphate anion is tetrahedral, as usual. The same structural motif is observed for lead chromate (PbCrO4). Monazite sand from Brazil was first noticed in sand carried in ship's ballast by Carl Auer von Welsbach in the 1880s. Von Welsbach was looking for thorium for his newly invented incandescent mantles. Monazite sand was quickly adopted as the thorium source and became the foundation of the rare-earth industry. Monazite sand was also briefly mined in North Carolina, but, shortly thereafter, extensive deposits in southern India were found. Brazilian and Indian monazite dominated the industry before World War II, after which major mining activity transferred to South Africa. There are also large monazite deposits in Australia. Monazite was the only significant source of commercial lanthanides, but concern over the disposal of the radioactive daughter products of thorium, bastnäsite came to displace monazite in the production of lanthanides in the 1960s due to its much lower thorium content. Increased interest in thorium for nuclear energy may bring monazite back into commercial use.

[ "Zircon", "Bastnäsite", "Ancylite", "Thorite", "Fluocerite", "Synchysite" ]
Parent Topic
Child Topic
    No Parent Topic