Carbonic acid is a chemical compound with the chemical formula H2CO3 (equivalently OC(OH)2). It is also a name sometimes given to solutions of carbon dioxide in water (carbonated water), because such solutions contain small amounts of H2CO3. In physiology, carbonic acid is described as volatile acid or respiratory acid, because it is the only acid excreted as a gas by the lungs. It plays an important role in the bicarbonate buffer system to maintain acid–base homeostasis. Carbonic acid is a chemical compound with the chemical formula H2CO3 (equivalently OC(OH)2). It is also a name sometimes given to solutions of carbon dioxide in water (carbonated water), because such solutions contain small amounts of H2CO3. In physiology, carbonic acid is described as volatile acid or respiratory acid, because it is the only acid excreted as a gas by the lungs. It plays an important role in the bicarbonate buffer system to maintain acid–base homeostasis. Carbonic acid, which is a weak acid, forms two kinds of salts: the carbonates and the bicarbonates. In geology, carbonic acid causes limestone to dissolve, producing calcium bicarbonate, which leads to many limestone features such as stalactites and stalagmites. It was long believed that carbonic acid could not exist as a pure compound. However, in 1991 it was reported that NASA scientists had succeeded in making solid H2CO3 samples. When carbon dioxide dissolves in water it exists in chemical equilibrium with carbonic acid: The hydration equilibrium constant at 25 °C is called Kh, which in the case of carbonic acid is / ≈ 1.7×10−3 in pure water and ≈ 1.2×10−3 in seawater. Hence, the majority of the carbon dioxide is not converted into carbonic acid, remaining as CO2 molecules. In the absence of a catalyst, the equilibrium is reached quite slowly. The rate constants are 0.039 s−1 for the forward reaction (CO2 + H2O → H2CO3) and 23 s−1 for the reverse reaction (H2CO3 → CO2 + H2O). The addition of two molecules of water to CO2 would give orthocarbonic acid, C(OH)4, which exists only in minute amounts in aqueous solution. Addition of base to an excess of carbonic acid gives bicarbonate (hydrogen carbonate). With excess base, carbonic acid reacts to give carbonate salts. Bicarbonate is an intermediate in the transport of CO2 out of the body by respiratory gas exchange. The hydration reaction of CO2 is generally very slow in the absence of a catalyst, but red blood cells contain carbonic anhydrase, which increases the reaction rate, producing bicarbonate (HCO3−) dissolved in the blood plasma. This catalysed reaction is reversed in the lungs, where it converts the bicarbonate back into CO2 and allows it to be expelled. This equilibration plays an important role as a buffer in mammalian blood. A 2016 theoretical report suggests that carbonic acid may play a pivotal role in protonating various nitrogen bases in blood serum. The oceans of the world have absorbed almost half of the CO2 emitted by humans from the burning of fossil fuels. It has been estimated that the extra dissolved carbon dioxide has caused the ocean's average surface pH to shift by about −0.1 unit from pre-industrial levels. This is known as ocean acidification, even though the ocean remains basic. Carbonic acid is a carboxylic acid with a hydroxyl group as the substituent. It is also a polyprotic acid — specifically it is diprotic, meaning that it has two protons that may dissociate from the parent molecule. Thus, there are two dissociation constants, first of which is for the dissociation into the bicarbonate (also called hydrogen carbonate) ion HCO3−: