language-icon Old Web
English
Sign In

Extra-ocular muscles

The extraocular muscles are the six muscles that control movement of the eye and one muscle that controls eyelid elevation (levator palpebrae). The actions of the six muscles responsible for eye movement depend on the position of the eye at the time of muscle contraction.Inferior rectus muscleRetractor bulbi muscleof the upper eyelidNerves of the orbit. Seen from above.Figure showing the mode of innervation of the Recti medialis and lateralis of the eye.Dissection showing origins of right ocular muscles, and nerves entering by the superior orbital fissure.View of the orbit from the front, with nerves and extraocular muscles.Extraocular muscles The extraocular muscles are the six muscles that control movement of the eye and one muscle that controls eyelid elevation (levator palpebrae). The actions of the six muscles responsible for eye movement depend on the position of the eye at the time of muscle contraction. Since only a small part of the eye called the fovea provides sharp vision, the eye must move to follow a target. Eye movements must be precise and fast. This is seen in scenarios like reading, where the reader must shift gaze constantly. Although under voluntary control, most eye movement is accomplished without conscious effort. Precisely how the integration between voluntary and involuntary control of the eye occurs is a subject of continuing research. It is known, however, that the vestibulo-ocular reflex plays an important role in the involuntary movement of the eye. Four of the extraocular muscles have their origin in the back of the orbit in a fibrous ring called the annulus of Zinn: the four rectus muscles. The four rectus muscles attach directly to the front half of the eye (anterior to the eye's equator), and are named after their straight paths. Note that medial and lateral are relative terms. Medial indicates near the midline, and lateral describes a position away from the midline. Thus, the medial rectus is the muscle closest to the nose. The superior and inferior recti do not pull straight back on the eye, because both muscles also pull slightly medially. This posterior medial angle causes the eye to roll with contraction of either the superior rectus or inferior rectus muscles. The extent of rolling in the recti is less than the oblique, and opposite from it. The superior oblique muscle originates at the back of the orbit (a little closer to the medial rectus, though medial to it), getting rounder as it courses forward to a rigid, cartilaginous pulley, called the trochlea, on the upper, nasal wall of the orbit. The muscle becomes tendinous about 10mm before it passes through the pulley, turning sharply across the orbit, and inserts on the lateral, posterior part of the globe. Thus, the superior oblique travels posteriorly for the last part of its path, going over the top of the eye. Due to its unique path, the superior oblique, when activated, pulls the eye downward and laterally. The last muscle is the inferior oblique, which originates at the lower front of the nasal orbital wall, and passes under the LR to insert on the lateral, posterior part of the globe. Thus, the inferior oblique pulls the eye upward and laterally. The movements of the extraocular muscles take place under the influence of a system of extraocular muscle pulleys, soft tissue pulleys in the orbit. The extraocular muscle pulley system is fundamental to the movement of the eye muscles, in particular also to ensure conformity to Listing's law. Certain diseases of the pulleys (heterotopy, instability, and hindrance of the pulleys) cause particular patterns of incomitant strabismus. Defective pulley functions can be improved by surgical interventions. The extraocular muscles are supplied mainly by branches of the ophthalmic artery. This is done either directly or indirectly, as in the lateral rectus muscle, via the lacrimal artery, a main branch of the ophthalmic artery. Additional branches of the ophthalmic artery include the ciliary arteries, which branch into the anterior ciliary arteries. Each rectus muscle receives blood from two anterior ciliary arteries, except for the lateral rectus muscle, which receives blood from only one. The exact number and arrangement of these cilary arteries may vary. Branches of the infraorbital artery supply the inferior rectus and inferior oblique muscles. The nuclei or bodies of these nerves are found in the brain stem. The nuclei of the abducens and oculomotor nerves are connected. This is important in coordinating the motion of the lateral rectus in one eye and the medial action on the other. In one eye, in two antagonistic muscles, like the lateral and medial recti, contraction of one leads to inhibition of the other. Muscles show small degrees of activity even when resting, keeping the muscles taut. This 'tonic' activity is brought on by discharges of the motor nerve to the muscle. The extraocular muscles develop along with Tenon's capsule (part of the ligaments) and the fatty tissue of the eye socket (orbit). There are three centers of growth that are important in the development of the eye, and each is associated with a nerve. Hence the subsequent nerve supply (innervation) of the eye muscles is from three cranial nerves. The development of the extraocular muscles is dependent on the normal development of the eye socket, while the formation of the ligament is fully independent.

[ "Anatomy", "Surgery", "Diabetes mellitus", "Ophthalmology" ]
Parent Topic
Child Topic
    No Parent Topic