Barium borate is an inorganic compound, a borate of barium with a chemical formula BaB2O4 or Ba(BO2)2. It is available as a hydrate or dehydrated form, as white powder or colorless crystals. The crystals exist in the high-temperature α phase and low-temperature β phase, abbreviated as BBO; both phases are birefringent, and BBO is a common nonlinear optical material. Barium borate is an inorganic compound, a borate of barium with a chemical formula BaB2O4 or Ba(BO2)2. It is available as a hydrate or dehydrated form, as white powder or colorless crystals. The crystals exist in the high-temperature α phase and low-temperature β phase, abbreviated as BBO; both phases are birefringent, and BBO is a common nonlinear optical material. Barium borate exists in two major crystalline forms: alpha and beta. The low-temperature beta phase converts into the alpha phase upon heating to 925 °C. β-Barium borate (BBO) differs from the α form by the positions of the barium ions within the crystal. Both phases are birefringent, however the α phase possesses centric symmetry and thus does not have the same nonlinear properties as the β phase. Alpha barium borate, α-BaB2O4 is an optical material with a very wide optical transmission window from about 190 nm to 3500 nm. It has good mechanical properties and is a suitable material for high-power ultraviolet polarization optics. It can replace calcite, titanium dioxide or lithium niobate in Glan–Taylor prisms, Glan–Thompson prisms, walk-off beam splitters and other optical components. It has low hygroscopicity, and its Mohs hardness is 4.5. Its damage threshold is 1 GW/cm2 at 1064 nm and 500 MW/cm2 at 355 nm. Beta barium borate, β-BaB2O4, is a nonlinear optical material transparent in the range ~190–3300 nm. It can be used for spontaneous parametric down-conversion. Its Mohs hardness is also 4.5. Barium borate has strong negative uniaxial birefringence and can be phase-matched for type I (ooe) second-harmonic generation from 409.6 to 3500 nm. The temperature sensitivity of the indices of refraction is low, leading to an unusually large (55 °C) temperature phase-matching bandwidth. Barium borate can be prepared by reaction of an aqueous solution of boric acid with barium hydroxide. The prepared γ-barium borate contains water of crystallization that can not be completely removed by drying at 120 °C. Dehydrated γ-barium borate can be prepared by heating to 300–400 °C. Calcination at about 600–800 °C causes complete conversion to the β form. BBO prepared by this method does not contain trace amounts of BaB2O2 BBO crystals for nonlinear optics can be grown from fluxed melt of barium borate, sodium oxide and sodium chloride. Thin films of barium borate can be prepared by MOCVD from barium(II) hydro-tri(1-pyrazolyl)borate. Different phases can be obtained depending on deposition temperatures. Thin films of beta-barium borate can be prepared by sol-gel synthesis. Barium borate monohydrate is prepared from the solution of barium sulfide and sodium tetraborate. It is a white powder. It is used as an additive to e.g. paints as flame retardant, mold inhibitor, and corrosion inhibitor. It is also used as a white pigment.