language-icon Old Web
English
Sign In

Station-to-Station protocol

In public-key cryptography, the Station-to-Station (STS) protocol is a cryptographic key agreement scheme. The protocol is based on classic Diffie–Hellman, and provides mutual key and entity authentication. Unlike the classic Diffie–Hellman, which is not secure against a man-in-the-middle attack, this protocol assumes that the parties have signature keys, which are used to sign messages, thereby providing security against man-in-the-middle attacks. In public-key cryptography, the Station-to-Station (STS) protocol is a cryptographic key agreement scheme. The protocol is based on classic Diffie–Hellman, and provides mutual key and entity authentication. Unlike the classic Diffie–Hellman, which is not secure against a man-in-the-middle attack, this protocol assumes that the parties have signature keys, which are used to sign messages, thereby providing security against man-in-the-middle attacks. In addition to protecting the established key from an attacker, the STS protocol uses no timestamps and provides perfect forward secrecy. It also entails two-way explicit key confirmation, making it an authenticated key agreement with key confirmation (AKC) protocol. STS was originally presented in 1987 in the context of ISDN security (O'Higgins et al. 1987), finalized in 1989 and generally presented by Whitfield Diffie, Paul C. van Oorschot and Michael J. Wiener in 1992. The historical context for the protocol is also discussed in Diffie (1988). Deployment of STS can take different forms depending on communication requirements and the level of prior communication between parties. The data described in STS Setup may be shared prior to the beginning of a session to lessen the impact of the session's establishment. In the following explanations, exponentiation (Diffie–Hellman) operations provide the basis for key agreement, though this is not a requirement. The protocol may be modified, for example, to use elliptic curves instead.

[ "Key exchange", "Key distribution", "Forward secrecy" ]
Parent Topic
Child Topic
    No Parent Topic