language-icon Old Web
English
Sign In

Isua Greenstone Belt

The Isua Greenstone Belt is an Archean greenstone belt in southwestern Greenland. The belt is aged between 3.7 and 3.8 billion years. The belt contains variably metamorphosed mafic volcanic and sedimentary rocks. The occurrence of boninitic geochemical signatures, characterized by extreme depletion in trace elements that are not fluid mobile, offers evidence that plate tectonic processes in which lithic crust is melted may have been responsible for the creation of the belt. Another theory posits that the belt formed via a process known as vertical plate tectonics. The Isua Greenstone Belt is an Archean greenstone belt in southwestern Greenland. The belt is aged between 3.7 and 3.8 billion years. The belt contains variably metamorphosed mafic volcanic and sedimentary rocks. The occurrence of boninitic geochemical signatures, characterized by extreme depletion in trace elements that are not fluid mobile, offers evidence that plate tectonic processes in which lithic crust is melted may have been responsible for the creation of the belt. Another theory posits that the belt formed via a process known as vertical plate tectonics. In 2016 melting snow revealed putative 3.7-billion-year-old stromatolite fossils, which would be the oldest by several hundred million years thus far discovered on Earth. If confirmed, the discovery of complex stromatolite structures at Isua so early in the history of the Earth would suggest that life first evolved on Earth over 4 billion years ago. There is currently debate over whether the specimens are indeed biogenic, which has been disputed by another research team that visited the site. The Isua Greenstone Belt, also known as the Isua supracrustal belt since it is composed of supracrustal rock deposited upon basement rock strata, is located in the southwestern portion of Greenland, in the Isukasia terrane, near the Nuuk capital region. The greenstone belt is made up of metamorphosed mafic volcanic and sedimentary rocks that are usually juxtaposed by mylonites or fault boundaries. By using uranium-lead dating on zircon and titanite, the tectonic history was dated to be approximately 3,700–3,600 million years old. The Isua Greenstone has been studied by Earth scientists due to evidence the area holds for early Earth plate tectonics, since it houses one of the oldest, best-preserved ancient plate tectonic sequences. In addition, the area is large, exposed, and there are areas that have experienced relatively low deformation and alteration to the original rock sequences. The Isua Greenstone is divided into a northern and a southern section by the Ivinnguit Fault, shown on the map below right. The northern area of the Isua Greenstone Belt is mainly composed of amphibolite rocks, volcanic rocks, upper mantle peridotite, and layered gabbros; a suite which suggests crustal shortening. Scientists have used different methods to determine how the Isua Greenstone Belt formed. Some conclude that it formed at an ancient ocean-ocean convergent zone, where subduction-caused partial melting and metasomatism of the mantle as well as the intrusion of tonalites partially melted the overlying supracrustal rocks and created the first continental crust. However, the geological evolution of the Isua Greenstone Belt remains controversial, as scientists try to come to a consensus on how it formed: whether due to such a subduction zone or to some other former process like vertical plate tectonics. Ultimately, a specific conclusion of how the Isua Greenstone Belt formed has not been reached, but some pieces of the puzzle have been proposed. In an attempt to understand the origin of the Isua Greenstone Belt, scientists have used several different methods. These include enlisting U-Pb zircon dating that measures the decay of uranium to lead in zircons using sensitive high-resolution ion microprobe (SHRIMP), analysing elemental chemistry and composition, rendering three-dimensional features on paper using the stereographic projections that geologists call 'stereonets', and assessing lithologic associations. In addition to information gathered directly from the rocks, scientists have also used observations of the placement of the rocks and how they are separated into units: this is a more kinematic approach to the area. In addition, zoned garnets from different areas of the Isua Greenstone Belt have been used in garnet-biotite geothermometry, which has been used to determine the timing of metamorphism. Scientists have tried to relate their findings to modern day proxies of subduction zones and other tectonic events. Efforts to depict initial lithologies and tectonic formations of the Isua Greenstone Belt have been difficult due to the immense episodes of regional metamorphism the area has experienced, which is why most efforts have been focused on the northern complex, called the Isukasia Terrane, where the rocks have experienced a lower metamorphic grade. There are several lithologies that make up the Isua Greenstone Belt and the main rock types have been located and mapped. These include the Amitsoq Tonalite-Trondhjemite-Granodiorite (TTG) orthogneisses, pillow lavas and pillow breccias, banded iron formations, granodiorites, and metasedimentary rocks. In addition, the area contains other, less prevalent, lithologies such as meta-chert, and mafic volcanic rocks. Although there is still some debate on the kinematics of how each rock type was formed, the map at right shows a part of the Isua Supracrustal belt; these rock types are clues to the formation of the greenstone belt and have been extensively mapped. The map illustrates the entire greenstone belt area, with rock types and locations, found on the southwestern portion of Greenland. Below the map is a general timeline that shows when each rock was intruded into the greenstone belt. 1) Tonalitic Amitsoq orthogneisses: 2) Pillow lavas and pillow breccias: 3) Banded Iron Formations:

[ "Sedimentary rock", "Gneiss", "Banded iron formation" ]
Parent Topic
Child Topic
    No Parent Topic