language-icon Old Web
English
Sign In

Strontium aluminate

Strontium aluminate (SRA, SrAl) is an aluminate compound with the chemical formula SrAl2O4 (sometimes written as SrO.Al2O3). It is a pale yellow, monoclinic crystalline powder that is odorless and non-flammable. When activated with a suitable dopant (e.g. europium, written as Eu:SrAl2O4), it acts as a photoluminescent phosphor with long persistence of phosphorescence. Strontium aluminate (SRA, SrAl) is an aluminate compound with the chemical formula SrAl2O4 (sometimes written as SrO.Al2O3). It is a pale yellow, monoclinic crystalline powder that is odorless and non-flammable. When activated with a suitable dopant (e.g. europium, written as Eu:SrAl2O4), it acts as a photoluminescent phosphor with long persistence of phosphorescence. Strontium aluminates exist in other compositions including SrAl4O7 (monoclinic), Sr3Al2O6 (cubic), SrAl12O19 (hexagonal), and Sr4Al14O25 (orthorhombic). For many phosphorescent-based purposes, strontium aluminate is a vastly superior phosphor to its predecessor, copper-activated zinc sulfide, being about 10 times brighter and 10 times longer glowing. It is frequently used in glow in the dark toys, where it displaces the cheaper but less efficient Cu:ZnS. However, the material has high hardness, causing abrasion to the machinery used in processing it; manufacturers frequently coat the particles with a suitable lubricant when adding them to a plastic. Different aluminates can be used as the host matrix. This influences the wavelength of emission of the europium ion, by its covalent interaction with surrounding oxygens, and crystal field splitting of the 5d orbital energy levels. Strontium aluminate phosphors produce green and aqua hues, where green gives the highest brightness and aqua the longest glow time. The excitation wavelengths for strontium aluminate range from 200 to 450 nm. The wavelength for its green formulation is 520 nm, its aqua, or blue-green, version emits at 505 nm, and its blue emits at 490 nm. Strontium aluminate can be formulated to phosphoresce at longer (yellow to red) wavelengths as well, though such emission is often dimmer than that of more common phosphorescence at shorter wavelengths. For europium-dysprosium doped aluminates, the peak emission wavelengths are 520 nm for SrAl2O4, 480 nm for SrAl4O7, and 400 nm for SrAl12O19. Eu2+,Dy3+:SrAl2O4 is important as a persistently luminescent phosphor for industrial applications. It can be produced by molten salt assisted process at 900 °C. The most described type is the stoichiometric green-emitting (approx. 530 nm) Eu2+:SrAl2O4. Eu2+,Dy3+,B:SrAl2O4 shows significantly longer afterglow than the europium-only doped material. The Eu2+ dopant shows high afterglow, while Eu3+ has almost none. Polycrystalline Mn:SrAl12O19 is used as a green phosphor for plasma displays, and when doped with praseodymium or neodymium it can act as a good active laser medium. Sr0.95Ce0.05Mg0.05Al11.95O19 is a phosphor emitting at 305 nm, with quantum efficiency of 70%. Several strontium aluminates can be prepared by the sol-gel process. The wavelengths produced depend on the internal crystal structure of the material. Slight modifications in the manufacturing process (the type of reducing atmosphere, small variations of stoichiometry of the reagents, addition of carbon or rare-earth halides) can significantly influence the emission wavelengths.

[ "Doping", "Photoluminescence", "Phosphor", "Ion", "Luminescence" ]
Parent Topic
Child Topic
    No Parent Topic