language-icon Old Web
English
Sign In

Anethole

Anethole (also known as anise camphor) is an organic compound that is widely used as a flavoring substance. It is a derivative of phenylpropene, a type of aromatic compound that occurs widely in nature, in essential oils. It contributes a large component of the odor and flavor of anise and fennel (both in the botanical family Apiaceae), anise myrtle (Myrtaceae), liquorice (Fabaceae), camphor, magnolia blossoms, and star anise (Illiciaceae). Closely related to anethole is its isomer estragole, abundant in tarragon (Asteraceae) and basil (Lamiaceae), that has a flavor reminiscent of anise. It is a colorless, fragrant, mildly volatile liquid. Anethole is only slightly soluble in water but exhibits high solubility in ethanol. This trait causes certain anise-flavored liqueurs to become opaque when diluted with water, the ouzo effect. Anethole (also known as anise camphor) is an organic compound that is widely used as a flavoring substance. It is a derivative of phenylpropene, a type of aromatic compound that occurs widely in nature, in essential oils. It contributes a large component of the odor and flavor of anise and fennel (both in the botanical family Apiaceae), anise myrtle (Myrtaceae), liquorice (Fabaceae), camphor, magnolia blossoms, and star anise (Illiciaceae). Closely related to anethole is its isomer estragole, abundant in tarragon (Asteraceae) and basil (Lamiaceae), that has a flavor reminiscent of anise. It is a colorless, fragrant, mildly volatile liquid. Anethole is only slightly soluble in water but exhibits high solubility in ethanol. This trait causes certain anise-flavored liqueurs to become opaque when diluted with water, the ouzo effect. Anethole is an aromatic, unsaturated ether related to lignols. It exists as both cis–trans isomers (see also E–Z notation), involving the double bond outside the ring. The more abundant isomer, and the one preferred for use, is the trans or E isomer. Like related compounds, anethole is poorly soluble in water. Historically, this property was used to detect adulteration in samples. Most anethole is obtained from turpentine-like extracts from trees. Of only minor commercial significance, anethole can also be isolated from essential oils. It is prepared commercially from 4-methoxypropiophenone, which is prepared from anisole. Anethole is distinctly sweet, measuring 13 times sweeter than sugar. It is perceived as being pleasant to the taste even at higher concentrations. It is used in alcoholic drinks ouzo, rakı and Pernod. It is also used in seasoning and confectionery applications, oral hygiene products, and in small quantities in natural berry flavors. Because they metabolize anethole into several aromatic chemical compounds, some bacteria are candidates for use in commercial bioconversion of anethole to more valuable materials. Bacterial strains capable of using trans-anethole as the sole carbon source include JYR-1 (Pseudomonas putida) and TA13 (Arthrobacter aurescens). Anethole has potent antimicrobial properties, against bacteria, yeasts, and fungi. Reported antibacterial properties include both bacteriostatic and bactericidal action against Salmonella enterica but not when used against Salmonella via a fumigation method. Antifungal activity includes increasing the effectiveness of some other phytochemicals (such as polygodial) against Saccharomyces cerevisiae and Candida albicans; In vitro, anethole has antihelmintic action on eggs and larvae of the sheep gastrointestinal nematode Haemonchus contortus. Anethole also has nematicidal activity against the plant nematode Meloidogyne javanica in vitro and in pots of cucumber seedlings.

[ "Essential oil", "Anethole trithione", "Trans-anethole" ]
Parent Topic
Child Topic
    No Parent Topic