Syndrome of inappropriate antidiuretic hormone secretion (SIADH) is characterized by excessive unsuppressible release of antidiuretic hormone (ADH) either from the posterior pituitary gland, or an abnormal non-pituitary source. Unsuppressed ADH causes an unrelenting increase in solute-free water being returned by the tubules of the kidney to the venous circulation. Syndrome of inappropriate antidiuretic hormone secretion (SIADH) is characterized by excessive unsuppressible release of antidiuretic hormone (ADH) either from the posterior pituitary gland, or an abnormal non-pituitary source. Unsuppressed ADH causes an unrelenting increase in solute-free water being returned by the tubules of the kidney to the venous circulation. The causes of SIADH are grouped into six categories: 1) central nervous system diseases that directly stimulate the hypothalamus, the site of control of ADH secretion; 2) various cancers that synthesize and secrete ectopic ADH; 3) various lung diseases; 4) numerous drugs that chemically stimulate the hypothalamus; 5) inherited mutations; and 6) miscellaneous largely transient conditions. ADH is derived from a preprohormone precursor that is synthesized in cells in the hypothalamus and stored in vesicles in the posterior pituitary. Appropriate ADH secretion is regulated by osmoreceptors on the hypothalamic cells that synthesize and store ADH: plasma hypertonicity activates these receptors, ADH is released into the blood stream, the kidney increases solute-free water return to the circulation, and the hypertonicity is alleviated. Inappropriate (increased) ADH secretion causes an unrelenting increase in solute-free water ('free water') absorption by the kidneys, with two consequences. First, in the extracellular fluid (ECF) space, there is a dilution of blood solutes, causing hypoosmolality, including a low sodium concentration - hyponatremia. Then virtually simultaneously, in the intracellular space, cells swell, i.e. intracellular volume increases. Swelling of brain cells causes various neurological abnormalities which in severe or acute cases can result in convulsions, coma, and death. Potential treatments of SIADH include restriction of fluid intake, correction of an identifiable reversible underlying cause, and/or medication which promotes solute-free water excretion by the kidney. The presence of cerebral edema may necessitate intravenous isotonic or hypertonic saline administration. SIADH was originally described in 1957 in two people with small-cell carcinoma of the lung. Causes of SIADH include conditions that dysregulate ADH secretion in the central nervous system, tumors that secrete ADH, drugs that increase ADH secretion, and many others. A list of common causes is below: Normally there are homeostatic processes in the body which maintain the concentration of body solutes within a narrow range, both inside and outside cells. The process occurs as follows: in some hypothalamic cells there are osmoreceptors which respond to hyperosmolality in body fluids by signalling the posterior pituitary gland to secrete ADH. This keeps serum sodium concentration - a proxy for solute concentration - at normal levels, prevents hypernatremia and turns off the osmoreceptors. Specifically, when the serum sodium rises above142 mEq/L, ADH secretion is maximal (and thirst is stimulated as well); when it is below 135 mEq/L, there is no secretion. ADH activates V2 receptors on the basolateral membrane of principal cells in the renal collecting duct, initiating a cyclic AMP-dependent process that culminates in increased production of water channels (aquaporin 2), and their insertion into the cells’ luminal membranes. Excessive ADH causes an inappropriate increase in the reabsorption in the kidneys of solute-free water ('free water'): excess water moves from the distal convoluted tubules (DCT)s and collecting tubules of the nephrons - via activation of aquaporins, the site of the ADH receptors - back into the circulation. This has two consequences. First, in the extracellular fluid (ECF) space, there is a dilution of blood solutes, causing hypoosmolality, including a low sodium concentration - hyponatremia. Also, virtually simultaneously to these ECF events, the intracellular space (ICF) volume expands. This is because the osmolality of the ECF is (transiently) less than that of the ICF; and since water is readily permeable to cell membranes, solute-free water moves from the ECF to the ICF compartment by osmosis: all cells swell. Swelling of brain cells - cerebral edema - causes various neurological abnormalities which in acute and/or severe cases can result in convulsions, coma, and death. The normal function of ADH on the kidneys is to control the amount of water reabsorbed by kidney nephrons. ADH acts in the distal portion of the renal tubule (Distal Convoluted Tubule) as well as on the collecting duct and causes the retention of water, but not solute. Hence, ADH activity effectively dilutes the blood (decreasing the concentrations of solutes such as sodium), causing hyponatremia; this is compounded by the fact that the body responds to water retention by decreasing aldosterone, thus allowing even more sodium wasting. For this reason, a high urinary sodium excretion will be seen. The abnormalities underlying type D syndrome of inappropriate antidiuretic hormone hypersecretion concern individuals where vasopressin release and response are normal but where abnormal renal expression and translocation of aquaporin 2, or both are found.